490 research outputs found

    Improving Hyperspectral Subpixel Target Detection Using Hybrid Detection Space

    Full text link
    A Hyper-Spectral Image (HSI) has high spectral and low spatial resolution. As a result, most targets exist as subpixels, which pose challenges in target detection. Moreover, limitation of target and background samples always hinders the target detection performance. In this thesis, a hybrid method for subpixel target detection of an HSI using minimal prior knowledge is developed. The Matched Filter (MF) and Adaptive Cosine Estimator (ACE) are two popular algorithms in HSI target detection. They have different advantages in differentiating target from background. In the proposed method, the scores of MF and ACE algorithms are used to construct a hybrid detection space. First, some high abundance target spectra are randomly picked from the scene to perform initial detection to determine the target and background subsets. Then, the reference target spectrum and background covariance matrix are improved iteratively, using the hybrid detection space. As the iterations continue, the reference target spectrum gets closer and closer to the central line that connects the centers of target and background and resulting in noticeable improvement in target detection. Two synthetic datasets and two real datasets are used in the experiments. The results are evaluated based on the mean detection rate, Receiver Operating Characteristic (ROC) curve and observation of the detection results. Compared to traditional MF and ACE algorithms with Reed-Xiaoli Detector (RXD) background covariance matrix estimation, the new method shows much better performance on all four datasets. This method can be applied in environmental monitoring, mineral detection, as well as oceanography and forestry reconnaissance to search for extremely small target distribution in a large scene

    The matched subspace detector with interaction effects

    Get PDF
    This paper aims to propose a new hyperspectral target-detection method termed the matched subspace detector with interaction effects (MSDinter). The MSDinter introduces “interaction effects” terms into the popular matched subspace detector (MSD), from regression analysis in multivariate statistics and the bilinear mixing model in hyperspectral unmixing. In this way, the interaction between the target and the surrounding background, which should have but not yet been considered by the MSD, is modelled and estimated, such that superior performance of target detection can be achieved. Besides deriving the MSDinter methodologically, we also demonstrate its superiority empirically using two hyperspectral imaging datasets

    Weighted Chebyshev Distance Algorithms for Hyperspectral Target Detection and Classification Applications

    Get PDF
    In this study, an efficient spectral similarity method referred to as Weighted Chebyshev Distance (WCD) is introduced for supervised classification of hyperspectral imagery (HSI) and target detection applications. The WCD is based on a simple spectral similarity based decision rule using limited amount of reference data. The estimation of upper and lower spectral boundaries of spectral signatures for all classes across spectral bands is referred to as a vector tunnel (VT). To obtain the reference information, the training signatures are provided randomly from existing data for a known class. After determination of the parameters of the WCD algorithm with the training set, classification or detection procedures are accomplished at each pixel. The comparative performances of the algorithms are tested under various cases. The decision criterion for classification of an input vector is based on choosing its class corresponding to the narrowest VT that the input vector fits in to. This is also shown to be approximated by the WCD in which the weights are chosen as an inverse power of the generalized standard deviation per spectral band. In computer experiments, the WCD classifier is compared with the Euclidian Distance (ED) classifier and the Spectral Angle Map (SAM) classifier. The WCD algorithm is also used for HSI target detection purpose. Target detection problem is considered as a two-class classification problem. The WCD is characterized only by the target class spectral information. Then, this method is compared with ED, SAM, Spectral Matched Filter (SMF), Adaptive Cosine Estimator (ACE) and Support Vector Machine (SVM) algorithms. During these studies, threshold levels are evaluated based on the Receiver Operating Characteristic Curves (ROC)

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer
    • …
    corecore