729 research outputs found

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Facial expression recognition in the wild : from individual to group

    Get PDF
    The progress in computing technology has increased the demand for smart systems capable of understanding human affect and emotional manifestations. One of the crucial factors in designing systems equipped with such intelligence is to have accurate automatic Facial Expression Recognition (FER) methods. In computer vision, automatic facial expression analysis is an active field of research for over two decades now. However, there are still a lot of questions unanswered. The research presented in this thesis attempts to address some of the key issues of FER in challenging conditions mentioned as follows: 1) creating a facial expressions database representing real-world conditions; 2) devising Head Pose Normalisation (HPN) methods which are independent of facial parts location; 3) creating automatic methods for the analysis of mood of group of people. The central hypothesis of the thesis is that extracting close to real-world data from movies and performing facial expression analysis on movies is a stepping stone in the direction of moving the analysis of faces towards real-world, unconstrained condition. A temporal facial expressions database, Acted Facial Expressions in the Wild (AFEW) is proposed. The database is constructed and labelled using a semi-automatic process based on closed caption subtitle based keyword search. Currently, AFEW is the largest facial expressions database representing challenging conditions available to the research community. For providing a common platform to researchers in order to evaluate and extend their state-of-the-art FER methods, the first Emotion Recognition in the Wild (EmotiW) challenge based on AFEW is proposed. An image-only based facial expressions database Static Facial Expressions In The Wild (SFEW) extracted from AFEW is proposed. Furthermore, the thesis focuses on HPN for real-world images. Earlier methods were based on fiducial points. However, as fiducial points detection is an open problem for real-world images, HPN can be error-prone. A HPN method based on response maps generated from part-detectors is proposed. The proposed shape-constrained method does not require fiducial points and head pose information, which makes it suitable for real-world images. Data from movies and the internet, representing real-world conditions poses another major challenge of the presence of multiple subjects to the research community. This defines another focus of this thesis where a novel approach for modeling the perception of mood of a group of people in an image is presented. A new database is constructed from Flickr based on keywords related to social events. Three models are proposed: averaging based Group Expression Model (GEM), Weighted Group Expression Model (GEM_w) and Augmented Group Expression Model (GEM_LDA). GEM_w is based on social contextual attributes, which are used as weights on each person's contribution towards the overall group's mood. Further, GEM_LDA is based on topic model and feature augmentation. The proposed framework is applied to applications of group candid shot selection and event summarisation. The application of Structural SIMilarity (SSIM) index metric is explored for finding similar facial expressions. The proposed framework is applied to the problem of creating image albums based on facial expressions, finding corresponding expressions for training facial performance transfer algorithms

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Aspects of an open architecture robot controller and its integration with a stereo vision sensor.

    Get PDF
    The work presented in this thesis attempts to improve the performance of industrial robot systems in a flexible manufacturing environment by addressing a number of issues related to external sensory feedback and sensor integration, robot kinematic positioning accuracy, and robot dynamic control performance. To provide a powerful control algorithm environment and the support for external sensor integration, a transputer based open architecture robot controller is developed. It features high computational power, user accessibility at various robot control levels and external sensor integration capability. Additionally, an on-line trajectory adaptation scheme is devised and implemented in the open architecture robot controller, enabling a real-time trajectory alteration of robot motion to be achieved in response to external sensory feedback. An in depth discussion is presented on integrating a stereo vision sensor with the robot controller to perform external sensor guided robot operations. Key issues for such a vision based robot system are precise synchronisation between the vision system and the robot controller, and correct target position prediction to counteract the inherent time delay in image processing. These were successfully addressed in a demonstrator system based on a Puma robot. Efforts have also been made to improve the Puma robot kinematic and dynamic performance. A simple, effective, on-line algorithm is developed for solving the inverse kinematics problem of a calibrated industrial robot to improve robot positioning accuracy. On the dynamic control aspect, a robust adaptive robot tracking control algorithm is derived that has an improved performance compared to a conventional PID controller as well as exhibiting relatively modest computational complexity. Experiments have been carried out to validate the open architecture robot controller and demonstrate the performance of the inverse kinematics algorithm, the adaptive servo control algorithm, and the on-line trajectory generation. By integrating the open architecture robot controller with a stereo vision sensor system, robot visual guidance has been achieved with experimental results showing that the integrated system is capable of detecting, tracking and intercepting random objects moving in 3D trajectory at a velocity up to 40mm/s
    corecore