20,542 research outputs found

    Kernel Support Vector Machines and Convolutional Neural Networks

    Get PDF
    Convolutional Neural Networks (CNN) have achieved great success in various computer vision tasks due to their strong ability in feature extraction. The trend of development of CNN architectures is to increase their depth so as to increase their feature extraction ability. Kernel Support Vector Machines (SVM), on the other hand, are known to give optimal separating surfaces by their ability to automatically select support vectors and perform classification in higher dimensional spaces. We investigate the idea of combining the two such that best of both worlds can be achieved and a more compact model can perform as well as deeper CNNs. In the past, attempts have been made to use CNNs to extract features from images and then classify with a kernel SVM, but this process was performed in two separate steps. In this paper, we propose one single model where a CNN and a kernel SVM are integrated together and can be trained end-to-end. In particular, we propose a fully-differentiable Radial Basis Function (RBF) layer, where it can be seamless adapted to a CNN environment and forms a better classifier compared to the normal linear classifier. Due to end-to-end training, our approach allows the initial layers of the CNN to extract features more adapted to the kernel SVM classifier. Our experiments demonstrate that the hybrid CNN-kSVM model gives superior results to a plain CNN model, and also performs better than the method where feature extraction and classification are performed in separate stages, by a CNN and a kernel SVM respectively

    Human activity recognition with inertial sensors using a deep learning approach

    Get PDF
    Our focus in this research is on the use of deep learning approaches for human activity recognition (HAR) scenario, in which inputs are multichannel time series signals acquired from a set of body-worn inertial sensors and outputs are predefined human activities. Here, we present a feature learning method that deploys convolutional neural networks (CNN) to automate feature learning from the raw inputs in a systematic way. The influence of various important hyper-parameters such as number of convolutional layers and kernel size on the performance of CNN was monitored. Experimental results indicate that CNNs achieved significant speed-up in computing and deciding the final class and marginal improvement in overall classification accuracy compared to the baseline models such as Support Vector Machines and Multi-layer perceptron networks
    • …
    corecore