252 research outputs found

    Subspace Representations and Learning for Visual Recognition

    Get PDF
    Pervasive and affordable sensor and storage technology enables the acquisition of an ever-rising amount of visual data. The ability to extract semantic information by interpreting, indexing and searching visual data is impacting domains such as surveillance, robotics, intelligence, human- computer interaction, navigation, healthcare, and several others. This further stimulates the investigation of automated extraction techniques that are more efficient, and robust against the many sources of noise affecting the already complex visual data, which is carrying the semantic information of interest. We address the problem by designing novel visual data representations, based on learning data subspace decompositions that are invariant against noise, while being informative for the task at hand. We use this guiding principle to tackle several visual recognition problems, including detection and recognition of human interactions from surveillance video, face recognition in unconstrained environments, and domain generalization for object recognition.;By interpreting visual data with a simple additive noise model, we consider the subspaces spanned by the model portion (model subspace) and the noise portion (variation subspace). We observe that decomposing the variation subspace against the model subspace gives rise to the so-called parity subspace. Decomposing the model subspace against the variation subspace instead gives rise to what we name invariant subspace. We extend the use of kernel techniques for the parity subspace. This enables modeling the highly non-linear temporal trajectories describing human behavior, and performing detection and recognition of human interactions. In addition, we introduce supervised low-rank matrix decomposition techniques for learning the invariant subspace for two other tasks. We learn invariant representations for face recognition from grossly corrupted images, and we learn object recognition classifiers that are invariant to the so-called domain bias.;Extensive experiments using the benchmark datasets publicly available for each of the three tasks, show that learning representations based on subspace decompositions invariant to the sources of noise lead to results comparable or better than the state-of-the-art

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Kernel Matrix-Based Heuristic Multiple Kernel Learning

    Get PDF
    Kernel theory is a demonstrated tool that has made its way into nearly all areas of machine learning. However, a serious limitation of kernel methods is knowing which kernel is needed in practice. Multiple kernel learning (MKL) is an attempt to learn a new tailored kernel through the aggregation of a set of valid known kernels. There are generally three approaches to MKL: fixed rules, heuristics, and optimization. Optimization is the most popular; however, a shortcoming of most optimization approaches is that they are tightly coupled with the underlying objective function and overfitting occurs. Herein, we take a different approach to MKL. Specifically, we explore different divergence measures on the values in the kernel matrices and in the reproducing kernel Hilbert space (RKHS). Experiments on benchmark datasets and a computer vision feature learning task in explosive hazard detection demonstrate the effectiveness and generalizability of our proposed methods

    Learning Robust and Discriminative Manifold Representations for Pattern Recognition

    Get PDF
    Face and object recognition find applications in domains such as biometrics, surveillance and human computer interaction. An important component in any recognition pipeline is to learn pertinent image representations that will help the system to discriminate one image class from another. These representations enable the system to learn a discriminative function that can classify a wide range of images. In practical situations, the images acquired are often corrupted with occlusions and noise. Thus, a robust and discriminative learning is necessary for good classification performance. This thesis explores two scenarios where robust and discriminative manifold representations help recognize face and object images. On one hand learning robust manifold projections enables the system to adapt to images across different domains including cases with noise and occlusions. And on the other hand learning discriminative manifold representations aid in image set comparison. The first contribution of this thesis is a robust approach to visual domain adaptation by learning a subspace with L1 principal component analysis (PCA) and L1 Grassmannian with applications to object and face recognition. Mapping data from different domains on a low dimensional subspace through PCA is a common step in subspace based unsupervised domain adaptation. Subspaces extracted by PCA are prone to be affected by outliers that lead to noisy projections. A robust subspace learning through L1-PCA helps in improving performance. The proposed approach was tested on the office, Caltech - 256, Yale-A and AT&T datasets. Results indicate the improvement of classification accuracy for face and object recognition task. The second contribution of this thesis is a biologically motivated manifold learning framework for image set classification by independent component analysis (ICA) for Grassmann manifolds. It has been discovered that the simple cells in the visual cortex learn spatially localized image representations. Similar representations can be learnt using ICA. Motivated by the manifold hypothesis, a Grassmann manifold is learnt using the independent components which enables compact representation through linear subspaces. The efficacy of the proposed approach is demonstrated for image set classification on face and object recognition datasets such as AT&T, extended Yale, labelled faces in the wild and ETH - 80

    Relevant data representation by a Kernel-based framework

    Get PDF
    Nowadays, the analysis of a large amount of data has emerged as an issue of great interest taking increasing place in the scientific community, especially in automation, signal processing, pattern recognition, and machine learning. In this sense, the identification, description, classification, visualization, and clustering of events or patterns are important problems for engineering developments and scientific issues, such as biology, medicine, economy, artificial vision, artificial intelligence, and industrial production. Nonetheless, it is difficult to interpret the available information due to its complexity and a large amount of obtained features. In addition, the analysis of the input data requires the development of methodologies that allow to reveal the relevant behaviors of the studied process, particularly, when such signals contain hidden structures varying over a given domain, e.g., space and/or time. When the analyzed signal contains such kind of properties, directly applying signal processing and machine learning procedures without considering a suitable model that deals with both the statistical distribution and the data structure, can lead in unstable performance results. Regarding this, kernel functions appear as an alternative approach to address the aforementioned issues by providing flexible mathematical tools that allow enhancing data representation for supporting signal processing and machine learning systems. Moreover, kernelbased methods are powerful tools for developing better-performing solutions by adapting the kernel to a given problem, instead of learning data relationships from explicit raw vector representations. However, building suitable kernels requires some user prior knowledge about input data, which is not available in most of the practical cases. Furthermore, using the definitions of traditional kernel methods directly, possess a challenging estimation problem that often leads to strong simplifications that restrict the kind of representation that we can use on the data. In this study, we propose a data representation framework based on kernel methods to learn automatically relevant sample relationships in learning systems. Namely, the proposed framework is divided into five kernel-based approaches, which aim to compute relevant data representations by adapting them according to both the imposed sample relationships constraints and the learning scenario (unsupervised or supervised task). First, we develop a kernel-based representation approach that allows revealing the main input sample relations by including relevant data structures using graph-based sparse constraints. Thus, salient data structures are highlighted aiming to favor further unsupervised clustering stages. This approach can be viewed as a graph pruning strategy within a spectral clustering framework which allows enhancing both the local and global data consistencies for a given input similarity matrix. Second, we introduce a kernel-based representation methodology that captures meaningful data relations in terms of their statistical distribution. Thus, an information theoretic learning (ITL) based penalty function is introduced to estimate a kernel-based similarity that maximizes the whole information potential variability. So, we seek for a reproducing kernel Hilbert space (RKHS) that spans the widest information force magnitudes among data points to support further clustering stages. Third, an entropy-like functional on positive definite matrices based on Renyi’s definition is adapted to develop a kernel-based representation approach which considers the statistical distribution and the salient data structures. Thereby, relevant input patterns are highlighted in unsupervised learning tasks. Particularly, the introduced approach is tested as a tool to encode relevant local and global input data relationships in dimensional reduction applications. Fourth, a supervised kernel-based representation is introduced via a metric learning procedure in RKHS that takes advantage of the user-prior knowledge, when available, regarding the studied learning task. Such an approach incorporates the proposed ITL-based kernel functional estimation strategy to adapt automatically the relevant representation using both the supervised information and the input data statistical distribution. As a result, relevant sample dependencies are highlighted by weighting the input features that mostly encode the supervised learning task. Finally, a new generalized kernel-based measure is proposed by taking advantage of different RKHSs. In this way, relevant dependencies are highlighted automatically by considering the input data domain-varying behavior and the user-prior knowledge (supervised information) when available. The proposed measure is an extension of the well-known crosscorrentropy function based on Hilbert space embeddings. Throughout the study, the proposed kernel-based framework is applied to biosignal and image data as an alternative to support aided diagnosis systems and image-based object analysis. Indeed, the introduced kernel-based framework improve, in most of the cases, unsupervised and supervised learning performances, aiding researchers in their quest to process and to favor the understanding of complex dataResumen: Hoy en día, el análisis de datos se ha convertido en un tema de gran interés para la comunidad científica, especialmente en campos como la automatización, el procesamiento de señales, el reconocimiento de patrones y el aprendizaje de máquina. En este sentido, la identificación, descripción, clasificación, visualización, y la agrupación de eventos o patrones son problemas importantes para desarrollos de ingeniería y cuestiones científicas, tales como: la biología, la medicina, la economía, la visión artificial, la inteligencia artificial y la producción industrial. No obstante, es difícil interpretar la información disponible debido a su complejidad y la gran cantidad de características obtenidas. Además, el análisis de los datos de entrada requiere del desarrollo de metodologías que permitan revelar los comportamientos relevantes del proceso estudiado, en particular, cuando tales señales contienen estructuras ocultas que varían sobre un dominio dado, por ejemplo, el espacio y/o el tiempo. Cuando la señal analizada contiene este tipo de propiedades, los rendimientos pueden ser inestables si se aplican directamente técnicas de procesamiento de señales y aprendizaje automático sin tener en cuenta la distribución estadística y la estructura de datos. Al respecto, las funciones núcleo (kernel) aparecen como un enfoque alternativo para abordar las limitantes antes mencionadas, proporcionando herramientas matemáticas flexibles que mejoran la representación de los datos de entrada. Por otra parte, los métodos basados en funciones núcleo son herramientas poderosas para el desarrollo de soluciones de mejor rendimiento mediante la adaptación del núcleo de acuerdo al problema en estudio. Sin embargo, la construcción de funciones núcleo apropiadas requieren del conocimiento previo por parte del usuario sobre los datos de entrada, el cual no está disponible en la mayoría de los casos prácticos. Por otra parte, a menudo la estimación de las funciones núcleo conllevan sesgos el modelo, siendo necesario apelar a simplificaciones matemáticas que no siempre son acordes con la realidad. En este estudio, se propone un marco de representación basado en métodos núcleo para resaltar relaciones relevantes entre los datos de forma automática en sistema de aprendizaje de máquina. A saber, el marco propuesto consta de cinco enfoques núcleo, en aras de adaptar la representación de acuerdo a las relaciones impuestas sobre las muestras y sobre el escenario de aprendizaje (sin/con supervisión). En primer lugar, se desarrolla un enfoque de representación núcleo que permite revelar las principales relaciones entre muestras de entrada mediante la inclusión de estructuras relevantes utilizando restricciones basadas en modelado por grafos. Por lo tanto, las estructuras de datos más sobresalientes se destacan con el objetivo de favorecer etapas posteriores de agrupamiento no supervisado. Este enfoque puede ser visto como una estrategia de depuración de grafos dentro de un marco de agrupamiento espectral que permite mejorar las consistencias locales y globales de los datos En segundo lugar, presentamos una metodología de representación núcleo que captura relaciones significativas entre muestras en términos de su distribución estadística. De este modo, se introduce una función de costo basada en aprendizaje por teoría de la información para estimar una similitud que maximice la variabilidad del potencial de información de los datos de entrada. Así, se busca un espacio de Hilbert generado por el núcleo que contenga altas fuerzas de información entre los puntos para favorecer el agrupamiento entre los mismos. En tercer lugar, se propone un esquema de representación que incluye un funcional de entropía para matrices definidas positivas a partir de la definición de Renyi. En este sentido, se pretenden incluir la distribución estadística de las muestras y sus estructuras relevantes. Por consiguiente, los patrones de entrada pertinentes se destacan en tareas de aprendizaje sin supervisión. En particular, el enfoque introducido se prueba como una herramienta para codificar las relaciones locales y globales de los datos en tareas de reducción de dimensión. En cuarto lugar, se introduce una metodología de representación núcleo supervisada a través de un aprendizaje de métrica en el espacio de Hilbert generado por una función núcleo en aras de aprovechar el conocimiento previo del usuario con respecto a la tarea de aprendizaje. Este enfoque incorpora un funcional por teoría de información que permite adaptar automáticamente la representación utilizando tanto información supervisada y la distribución estadística de los datos de entrada. Como resultado, las dependencias entre las muestras se resaltan mediante la ponderación de las características de entrada que codifican la tarea de aprendizaje supervisado. Por último, se propone una nueva medida núcleo mediante el aprovechamiento de diferentes espacios de representación. De este modo, las dependencias más relevantes entre las muestras se resaltan automáticamente considerando el dominio de interés de los datos de entrada y el conocimiento previo del usuario (información supervisada). La medida propuesta es una extensión de la función de cross-correntropia a partir de inmersiones en espacios de Hilbert. A lo largo del estudio, el esquema propuesto se valida sobre datos relacionados con bioseñales e imágenes como una alternativa para apoyar sistemas de apoyo diagnóstico y análisis objetivo basado en imágenes. De hecho, el marco introducido permite mejorar, en la mayoría de los casos, el rendimiento de sistemas de aprendizaje supervisado y no supervisado, favoreciendo la precisión de la tarea y la interpretabilidad de los datosDoctorad

    Investigating Social Interactions Using Multi-Modal Nonverbal Features

    Get PDF
    Every day, humans are involved in social situations and interplays, with the goal of sharing emotions and thoughts, establishing relationships with or acting on other human beings. These interactions are possible thanks to what is called social intelligence, which is the ability to express and recognize social signals produced during the interactions. These signals aid the information exchange and are expressed through verbal and non-verbal behavioral cues, such as facial expressions, gestures, body pose or prosody. Recently, many works have demonstrated that social signals can be captured and analyzed by automatic systems, giving birth to a relatively new research area called social signal processing, which aims at replicating human social intelligence with machines. In this thesis, we explore the use of behavioral cues and computational methods for modeling and understanding social interactions. Concretely, we focus on several behavioral cues in three specic contexts: rst, we analyze the relationship between gaze and leadership in small group interactions. Second, we expand our analysis to face and head gestures in the context of deception detection in dyadic interactions. Finally, we analyze the whole body for group detection in mingling scenarios

    Kernel-based approximate dynamic programming using Bellman residual elimination

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 207-221).Many sequential decision-making problems related to multi-agent robotic systems can be naturally posed as Markov Decision Processes (MDPs). An important advantage of the MDP framework is the ability to utilize stochastic system models, thereby allowing the system to make sound decisions even if there is randomness in the system evolution over time. Unfortunately, the curse of dimensionality prevents most MDPs of practical size from being solved exactly. One main focus of the thesis is on the development of a new family of algorithms for computing approximate solutions to large-scale MDPs. Our algorithms are similar in spirit to Bellman residual methods, which attempt to minimize the error incurred in solving Bellman's equation at a set of sample states. However, by exploiting kernel-based regression techniques (such as support vector regression and Gaussian process regression) with nondegenerate kernel functions as the underlying cost-to-go function approximation architecture, our algorithms are able to construct cost-to-go solutions for which the Bellman residuals are explicitly forced to zero at the sample states. For this reason, we have named our approach Bellman residual elimination (BRE). In addition to developing the basic ideas behind BRE, we present multi-stage and model-free extensions to the approach. The multistage extension allows for automatic selection of an appropriate kernel for the MDP at hand, while the model-free extension can use simulated or real state trajectory data to learn an approximate policy when a system model is unavailable.(cont.) We present theoretical analysis of all BRE algorithms proving convergence to the optimal policy in the limit of sampling the entire state space, and show computational results on several benchmark problems. Another challenge in implementing control policies based on MDPs is that there may be parameters of the system model that are poorly known and/or vary with time as the system operates. System performance can suer if the model used to compute the policy differs from the true model. To address this challenge, we develop an adaptive architecture that allows for online MDP model learning and simultaneous re-computation of the policy. As a result, the adaptive architecture allows the system to continuously re-tune its control policy to account for better model information 3 obtained through observations of the actual system in operation, and react to changes in the model as they occur. Planning in complex, large-scale multi-agent robotic systems is another focus of the thesis. In particular, we investigate the persistent surveillance problem, in which one or more unmanned aerial vehicles (UAVs) and/or unmanned ground vehicles (UGVs) must provide sensor coverage over a designated location on a continuous basis. This continuous coverage must be maintained even in the event that agents suer failures over the course of the mission. The persistent surveillance problem is pertinent to a number of applications, including search and rescue, natural disaster relief operations, urban traffic monitoring, etc.(cont.) Using both simulations and actual flight experiments conducted in the MIT RAVEN indoor flight facility, we demonstrate the successful application of the BRE algorithms and the adaptive MDP architecture in achieving high mission performance despite the random occurrence of failures. Furthermore, we demonstrate performance benefits of our approach over a deterministic planning approach that does not account for these failures.by Brett M. Bethke.Ph.D
    corecore