300 research outputs found

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    A Comparison of Fuzzy Clustering Algorithms Applied to Feature Extraction on Vineyard

    Get PDF
    Image segmentation is a process by which an image is partitioned into regions with similar features. Many approaches have been proposed for color image segmentation, but Fuzzy C-Means has been widely used, because it has a good performance in a large class of images. However, it is not adequate for noisy images and it also takes more time for execution as compared to other method as K-means. For this reason, several methods have been proposed to improve these weaknesses. Method like Possibilistic C-Means, Fuzzy Possibilistic C-Means, Robust Fuzzy Possibilistic C-Means and Fuzzy C-Means with Gustafson-Kessel algorithm. In this paper we perform a comparison of these clustering algorithms applied to feature extraction on vineyard images. Segmented images are evaluated using several quality parameters such as the rate of correctly classied area and runtim

    Certainty of outlier and boundary points processing in data mining

    Full text link
    Data certainty is one of the issues in the real-world applications which is caused by unwanted noise in data. Recently, more attentions have been paid to overcome this problem. We proposed a new method based on neutrosophic set (NS) theory to detect boundary and outlier points as challenging points in clustering methods. Generally, firstly, a certainty value is assigned to data points based on the proposed definition in NS. Then, certainty set is presented for the proposed cost function in NS domain by considering a set of main clusters and noise cluster. After that, the proposed cost function is minimized by gradient descent method. Data points are clustered based on their membership degrees. Outlier points are assigned to noise cluster and boundary points are assigned to main clusters with almost same membership degrees. To show the effectiveness of the proposed method, two types of datasets including 3 datasets in Scatter type and 4 datasets in UCI type are used. Results demonstrate that the proposed cost function handles boundary and outlier points with more accurate membership degrees and outperforms existing state of the art clustering methods.Comment: Conference Paper, 6 page

    A Novel Biometric Key Security System with Clustering and Convolutional Neural Network for WSN

    Get PDF
    Development in Wireless Communication technologies paves a way for the expansion of application and enhancement of security in Wireless Sensor Network using sensor nodes for communicating within the same or different clusters. In this work, a novel biometric key based security system is proposed with Optimized Convolutional Neural Network to differentiate authorized users from intruders to access network data and resources. Texture features are extracted from biometrics like Fingerprint, Retina and Facial expression to produce a biometric key, which is combined with pseudo random function for producing the secured private key for each user. Individually Adaptive Possibilistic C-Means Clustering and Kernel based Fuzzy C-Means Clustering are applied to the sensor nodes for grouping them into clusters based on the distance between the Cluster head and Cluster members. Group key obtained from fuzzy membership function of prime numbers is employed for packet transfer among groups. The three key security schemes proposed are Fingerprint Key based Security System, Retina Key based Security System, and Multibiometric Key based Security System with neural network for Wireless Sensor Networks. The results obtained from MATLAB Simulator indicates that the Multibiometric system with kernel clustering is highly secured and achieves simulation time less by 9%, energy consumption diminished by 20%, delay is reduced by 2%, Attack Detection Rate is improved by 5%, Packet Delivery Ratio increases by 6%, Packet Loss Ratio is decreased by 27%, Accuracy enhanced by 2%, and achieves 1% better precision compared to other methods

    Spatial Kernel-based Generalized C-mean Clustering for Medical Image Segmentation.

    Get PDF
    Segmentasi imej merupakan salah satu tugas penting yang telah dibangunkan secara pesat sejak beberapa dekad yang lalu. Image segmentation is one of the important tasks that has been rapidly develop in pass few decades

    A salient edges detection algorithm of multi-sensor images and its rapid calculation based on PFCM kernel clustering

    Get PDF
    AbstractMulti-sensor image matching based on salient edges has broad prospect in applications, but it is difficult to extract salient edges of real multi-sensor images with noises fast and accurately by using common algorithms. According to the analysis of the features of salient edges, a novel salient edges detection algorithm and its rapid calculation are proposed based on possibility fuzzy C-means (PFCM) kernel clustering using two-dimensional vectors composed of the values of gray and texture. PFCM clustering can overcome the shortcomings that fuzzy C-means (FCM) clustering is sensitive to noises and possibility C-means (PCM) clustering tends to find identical clusters. On this basis, a method is proposed to improve real-time performance by compressing data sets based on the idea of data reduction in the field of mathematical analysis. In addition, the idea that kernel-space is linearly separable is used to enhance robustness further. Experimental results show that this method extracts salient edges for real multi-sensor images with noises more accurately than the algorithm based on force fields and the FCM algorithm; and the proposed method is on average about 56 times faster than the PFCM algorithm in real time and has better robustness

    An Efficient Fuzzy Possibilistic C-Means with Penalized and Compensated Constraints

    Get PDF
    Improvement in sensing and storage devices and impressive growth in applications such as Internet search, digital imaging, and video surveillance have generated many high-volume, high-dimensional data. The raise in both the quantity and the kind of data requires improvement in techniques to understand, process and summarize the data. Categorizing data into reasonable groupings is one of the most essential techniques for understanding and learning. This is performed with the help of technique called clustering. This clustering technique is widely helpful in fields such as pattern recognition, image processing, and data analysis. The commonly used clustering technique is K-Means clustering. But this clustering results in misclassification when large data are involved in clustering. To overcome this disadvantage, Fuzzy- Possibilistic C-Means (FPCM) algorithm can be used for clustering. FPCM combines the advantages of Possibilistic C-Means (PCM) algorithm and fuzzy logic. For further improving the performance of clustering, penalized and compensated constraints are used in this paper. Penalized and compensated terms are embedded with the modified fuzzy possibilistic clustering method2019;s objective function to construct the clustering with enhanced performance. The experimental result illustrates the enhanced performance of the proposed clustering technique when compared to the fuzzy possibilistic c-means clustering algorithm
    corecore