4,001 research outputs found

    Robust PCA as Bilinear Decomposition with Outlier-Sparsity Regularization

    Full text link
    Principal component analysis (PCA) is widely used for dimensionality reduction, with well-documented merits in various applications involving high-dimensional data, including computer vision, preference measurement, and bioinformatics. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify PCA against outliers. A least-trimmed squares estimator of a low-rank bilinear factor analysis model is shown closely related to that obtained from an â„“0\ell_0-(pseudo)norm-regularized criterion encouraging sparsity in a matrix explicitly modeling the outliers. This connection suggests robust PCA schemes based on convex relaxation, which lead naturally to a family of robust estimators encompassing Huber's optimal M-class as a special case. Outliers are identified by tuning a regularization parameter, which amounts to controlling sparsity of the outlier matrix along the whole robustification path of (group) least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its neat ties to robust statistics, the developed outlier-aware PCA framework is versatile to accommodate novel and scalable algorithms to: i) track the low-rank signal subspace robustly, as new data are acquired in real time; and ii) determine principal components robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests corroborate the effectiveness of the proposed robust PCA schemes, when used to identify aberrant responses in personality assessment surveys, as well as unveil communities in social networks, and intruders from video surveillance data.Comment: 30 pages, submitted to IEEE Transactions on Signal Processin

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Enhancing the Accuracy of Synthetic File System Benchmarks

    Get PDF
    File system benchmarking plays an essential part in assessing the file system’s performance. It is especially difficult to measure and study the file system’s performance as it deals with several layers of hardware and software. Furthermore, different systems have different workload characteristics so while a file system may be optimized based on one given workload it might not perform optimally based on other types of workloads. Thus, it is imperative that the file system under study be examined with a workload equivalent to its production workload to ensure that it is optimized according to its usage. The most widely used benchmarking method is synthetic benchmarking due to its ease of use and flexibility. The flexibility of synthetic benchmarks allows system designers to produce a variety of different workloads that will provide insight on how the file system will perform under slightly different conditions. The downside of synthetic workloads is that they produce generic workloads that do not have the same characteristics as production workloads. For instance, synthetic benchmarks do not take into consideration the effects of the cache that can greatly impact the performance of the underlying file system. In addition, they do not model the variation in a given workload. This can lead to file systems not optimally designed for their usage. This work enhanced synthetic workload generation methods by taking into consideration how the file system operations are satisfied by the lower level function calls. In addition, this work modeled the variations of the workload’s footprint when present. The first step in the methodology was to run a given workload and trace it by a tool called tracefs. The collected traces contained data on the file system operations and the lower level function calls that satisfied these operations. Then the trace was divided into chunks sufficiently small enough to consider the workload characteristics of that chunk to be uniform. Then the configuration file that modeled each chunk was generated and supplied to a synthetic workload generator tool that was created by this work called FileRunner. The workload definition for each chunk allowed FileRunner to generate a synthetic workload that produced the same workload footprint as the corresponding segment in the original workload. In other words, the synthetic workload would exercise the lower level function calls in the same way as the original workload. Furthermore, FileRunner generated a synthetic workload for each specified segment in the order that they appeared in the trace that would result in a in a final workload mimicking the variation present in the original workload. The results indicated that the methodology can create a workload with a throughput within 10% difference and with operation latencies, with the exception of the create latencies, to be within the allowable 10% difference and in some cases within the 15% maximum allowable difference. The work was able to accurately model the I/O footprint. In some cases the difference was negligible and in the worst case it was at 2.49% difference

    Data Augmentation for Modeling Human Personality: The Dexter Machine

    Full text link
    Modeling human personality is important for several AI challenges, from the engineering of artificial psychotherapists to the design of persona bots. However, the field of computational personality analysis heavily relies on labeled data, which may be expensive, difficult or impossible to get. This problem is amplified when dealing with rare personality types or disorders (e.g., the anti-social psychopathic personality disorder). In this context, we developed a text-based data augmentation approach for human personality (PEDANT). PEDANT doesn't rely on the common type of labeled data but on the generative pre-trained model (GPT) combined with domain expertise. Testing the methodology on three different datasets, provides results that support the quality of the generated data
    • …
    corecore