1,904 research outputs found

    A Linear-time Independence Criterion Based on a Finite Basis Approximation

    Get PDF
    Detection of statistical dependence between random variables is an essential component in many machine learning algorithms. We propose a novel independence criterion for two random variables with linear-time complexity. We establish that our independence criterion is an upper bound of the Hirschfeld-Gebelein-Rényi maximum correlation coefficient between tested variables. A finite set of basis functions is employed to approximate the mapping functions that can achieve the maximal correlation. Using classic benchmark experiments based on independent component analysis, we demonstrate that our independence criterion performs comparably with the state-of-the-art quadratic-time kernel dependence measures like the Hilbert-Schmidt Independence Criterion, while being more efficient in computation. The experimental results also show that our independence criterion outperforms another contemporary linear-time kernel dependence measure, the Finite Set Independence Criterion. The potential application of our criterion in deep neural networks is validated experimentally

    A low variance consistent test of relative dependency

    Get PDF
    We describe a novel non-parametric statistical hypothesis test of relative dependence between a source variable and two candidate target variables. Such a test enables us to determine whether one source variable is significantly more dependent on a first target variable or a second. Dependence is measured via the Hilbert-Schmidt Independence Criterion (HSIC), resulting in a pair of empirical dependence measures (source-target 1, source-target 2). We test whether the first dependence measure is significantly larger than the second. Modeling the covariance between these HSIC statistics leads to a provably more powerful test than the construction of independent HSIC statistics by sub-sampling. The resulting test is consistent and unbiased, and (being based on U-statistics) has favorable convergence properties. The test can be computed in quadratic time, matching the computational complexity of standard empirical HSIC estimators. The effectiveness of the test is demonstrated on several real-world problems: we identify language groups from a multilingual corpus, and we prove that tumor location is more dependent on gene expression than chromosomal imbalances. Source code is available for download at https://github.com/wbounliphone/reldep.Comment: International Conference on Machine Learning, Jul 2015, Lille, Franc

    Two-Stage Fuzzy Multiple Kernel Learning Based on Hilbert-Schmidt Independence Criterion

    Full text link
    © 1993-2012 IEEE. Multiple kernel learning (MKL) is a principled approach to kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. In this paper, we develop a novel fuzzy multiple kernel learning model based on the Hilbert-Schmidt independence criterion (HSIC) for classification, which we call HSIC-FMKL. In this model, we first propose an HSIC Lasso-based MKL formulation, which not only has a clear statistical interpretation that minimum redundant kernels with maximum dependence on output labels are found and combined, but also enables the global optimal solution to be computed efficiently by solving a Lasso optimization problem. Since the traditional support vector machine (SVM) is sensitive to outliers or noises in the dataset, fuzzy SVM (FSVM) is used to select the prediction hypothesis once the optimal kernel has been obtained. The main advantage of FSVM is that we can associate a fuzzy membership with each data point such that these data points can have different effects on the training of the learning machine. We propose a new fuzzy membership function using a heuristic strategy based on the HSIC. The proposed HSIC-FMKL is a two-stage kernel learning approach and the HSIC is applied in both stages. We perform extensive experiments on real-world datasets from the UCI benchmark repository and the application domain of computational biology which validate the superiority of the proposed model in terms of prediction accuracy
    corecore