303 research outputs found

    Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm

    Get PDF
    In recent years, a variety of relevance feedback (RF) schemes have been developed to improve the performance of content-based image retrieval (CBIR). Given user feedback information, the key to a RF scheme is how to select a subset of image features to construct a suitable dissimilarity measure. Among various RF schemes, biased discriminant analysis (BDA) based RF is one of the most promising. It is based on the observation that all positive samples are alike, while in general each negative sample is negative in its own way. However, to use BDA, the small sample size (SSS) problem is a big challenge, as users tend to give a small number of feedback samples. To explore solutions to this issue, this paper proposes a direct kernel BDA (DKBDA), which is less sensitive to SSS. An incremental DKBDA (IDKBDA) is also developed to speed up the analysis. Experimental results are reported on a real-world image collection to demonstrate that the proposed methods outperform the traditional kernel BDA (KBDA) and the support vector machine (SVM) based RF algorithms

    Face Recognition using R-KDA with Non-Linear SVM for Multi-View Database

    Get PDF
    AbstractThis paper develops a new Face Recognition System which combines R-KDA for selecting optimal discriminant features with non-linear SVM for Recognition. Experiment results have been conducted showing the comparison of enhanced efficiency of our proposed system over R-KDA with k-nn as the similarity distance measure

    Eigenvector-based Dimensionality Reduction for Human Activity Recognition and Data Classification

    Get PDF
    In the context of appearance-based human motion compression, representation, and recognition, we have proposed a robust framework based on the eigenspace technique. First, the new appearance-based template matching approach which we named Motion Intensity Image for compressing a human motion video into a simple and concise, yet very expressive representation. Second, a learning strategy based on the eigenspace technique is employed for dimensionality reduction using each of PCA and FDA, while providing maximum data variance and maximum class separability, respectively. Third, a new compound eigenspace is introduced for multiple directed motion recognition that takes care also of the possible changes in scale. This method extracts two more features that are used to control the recognition process. A similarity measure, based on Euclidean distance, has been employed for matching dimensionally-reduced testing templates against a projected set of known motions templates. In the stream of nonlinear classification, we have introduced a new eigenvector-based recognition model, built upon the idea of the kernel technique. A practical study on the use of the kernel technique with 18 different functions has been carried out. We have shown in this study how crucial choosing the right kernel function is, for the success of the subsequent linear discrimination in the feature space for a particular problem. Second, building upon the theory of reproducing kernels, we have proposed a new robust nonparametric discriminant analysis approach with kernels. Our proposed technique can efficiently find a nonparametric kernel representation where linear discriminants can perform better. Data classification is achieved by integrating the linear version of the NDA with the kernel mapping. Based on the kernel trick, we have provided a new formulation for Fisher\u27s criterion, defined in terms of the Gram matrix only

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    Head Yaw Estimation From Asymmetry of Facial Appearance

    Full text link

    Incremental Sparse-PCA Feature Extraction For Data Streams

    Get PDF
    Intruders attempt to penetrate commercial systems daily and cause considerable financial losses for individuals and organizations. Intrusion detection systems monitor network events to detect computer security threats. An extensive amount of network data is devoted to detecting malicious activities. Storing, processing, and analyzing the massive volume of data is costly and indicate the need to find efficient methods to perform network data reduction that does not require the data to be first captured and stored. A better approach allows the extraction of useful variables from data streams in real time and in a single pass. The removal of irrelevant attributes reduces the data to be fed to the intrusion detection system (IDS) and shortens the analysis time while improving the classification accuracy. This dissertation introduces an online, real time, data processing method for knowledge extraction. This incremental feature extraction is based on two approaches. First, Chunk Incremental Principal Component Analysis (CIPCA) detects intrusion in data streams. Then, two novel incremental feature extraction methods, Incremental Structured Sparse PCA (ISSPCA) and Incremental Generalized Power Method Sparse PCA (IGSPCA), find malicious elements. Metrics helped compare the performance of all methods. The IGSPCA was found to perform as well as or better than CIPCA overall in term of dimensionality reduction, classification accuracy, and learning time. ISSPCA yielded better results for higher chunk values and greater accumulation ratio thresholds. CIPCA and IGSPCA reduced the IDS dataset to 10 principal components as opposed to 14 eigenvectors for ISSPCA. ISSPCA is more expensive in terms of learning time in comparison to the other techniques. This dissertation presents new methods that perform feature extraction from continuous data streams to find the small number of features necessary to express the most data variance. Data subsets derived from a few important variables render their interpretation easier. Another goal of this dissertation was to propose incremental sparse PCA algorithms capable to process data with concept drift and concept shift. Experiments using WaveForm and WaveFormNoise datasets confirmed this ability. Similar to CIPCA, the ISSPCA and IGSPCA updated eigen-axes as a function of the accumulation ratio value, forming informative eigenspace with few eigenvectors

    Alternating trilinear forms on a 9-dimensional space and degenerations of (3,3)-polarized Abelian surfaces

    Full text link
    We give a detailed analysis of the semisimple elements, in the sense of Vinberg, of the third exterior power of a 9-dimensional vector space over an algebraically closed field of characteristic different from 2 and 3. To a general such element, one can naturally associate an Abelian surface X, which is embedded in 8-dimensional projective space. We study the combinatorial structure of this embedding and explicitly recover the genus 2 curve whose Jacobian variety is X. We also classify the types of degenerations of X that can occur. Taking the union over all Abelian surfaces in Heisenberg normal form, we get a 5-dimensional variety which is a birational model for a genus 2 analogue of Shioda's modular surfaces. We find determinantal set-theoretic equations for this variety and present some additional equations which conjecturally generate the radical ideal.Comment: 30 pages; v2: small correction

    Selection of Wavelet Subbands Using Genetic Algorithm for Face Recognition

    Full text link
    Abstract. In this paper, a novel representation called the subband face is proposed for face recognition. The subband face is generated from selected subbands obtained using wavelet decomposition of the original face image. It is surmised that certain subbands contain information that is more significant for discriminating faces than other subbands. The problem of subband selection is cast as a combinatorial optimization problem and genetic algorithm (GA) is used to find the optimum subband combination by maximizing Fisher ratio of the training features. The performance of the GA selected subband face is evaluated using three face databases and compared with other wavelet-based representations.
    corecore