2,285 research outputs found

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio

    Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

    Get PDF
    We propose novel multi-order statistical descriptors which can be used for high speed object classification or face recognition from videos or image sets. We represent each gallery set with a global second-order statistic which captures correlated global variations in all feature directions as well as the common set structure. A lightweight descriptor is then constructed by efficiently compacting the second-order statistic using Cholesky decomposition. We then enrich the descriptor with the first-order statistic of the gallery set to further enhance the representation power. By projecting the descriptor into a low-dimensional discriminant subspace, we obtain further dimensionality reduction, while the discrimination power of the proposed representation is still preserved. Therefore, our method represents a complex image set by a single descriptor having significantly reduced dimensionality. We apply the proposed algorithm on image set and video-based face and periocular biometric identification, object category recognition, and hand gesture recognition. Experiments on six benchmark data sets validate that the proposed method achieves significantly better classification accuracy with lower computational complexity than the existing techniques. The proposed compact representations can be used for real-time object classification and face recognition in videos. 2013 IEEE.This work was supported by NPRP through the Qatar National Research Fund (a member of Qatar Foundation) under Grant 7-1711-1-312.Scopu
    • …
    corecore