800 research outputs found

    Statistical Coding and Decoding of Heartbeat Intervals

    Get PDF
    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems

    Decoding Perception of Speech from Behavioral Responses using Spatio-Temporal CNNs

    Get PDF
    Categorical perception (CP) of speech is a complex process reflecting individuals’ ability to perceive sound and is measured using response time (RT). The cognitive processes involved in mapping neural activities to behavioral response are stochastic and further compounded by individuality and variations. This thesis presents a data-driven approach and develops parameter optimized models to understand the relationship between cognitive events and behavioral response (e.g., RT). We introduce convolutional neural networks (CNN) to learn the representation from EEG recordings. In addition, we develop parameter optimized and interpretable models in decoding CP using two representations: 1) spatial-spectral topomaps and 2) evoked response potentials (ERP). We adopt state-of-the-art class discriminative visualization (GradCAM) tools to gain insights (as oppose to the’black box’ models) and building interpretable models. In addition, we develop a diverse set of models to account for the stochasticity and individual variations. We adopted weighted saliency scores of all models to quantify the learned representations’ effectiveness and utility in decoding CP manifested through behavioral response. Empirical analysis reveals that the γ band and early (∼ 0 - 200ms) and late (∼ 300 - 500ms) right hemisphere IFG engagement is critical in determining individuals’ RT. Our observations are consistent with prior findings, further validating the efficacy of our data-driven approach and optimized interpretable models

    Noise processing in the auditory system with applications in speech enhancement

    Get PDF
    Abstract: The auditory system is extremely efficient in extracting auditory information in the presence of background noise. However, speech enhancement algorithms, aimed at removing the background noise from a degraded speech signal, are not achieving results that are near the efficacy of the auditory system. The purpose of this study is thus to first investigate how noise affects the spiking activity of neurons in the auditory system and then use the brain activity in the presence of noise to design better speech enhancement algorithms. In order to investigate how noise affects the spiking activity of neurons, we first design a generalized linear model that relates the spiking activity of neurons to intrinsic and extrinsic covariates that can affect their activity, such as noise. From this model, we extract two metrics, one that shows the effects of noise on the spiking activity and another the relative effects of vocalization compared to noise. We use these metrics to analyze neural data, recorded from a structure of the auditory system named the inferior colliculus (IC), while presenting noisy vocalizations. We studied the effect of different kinds of noises (non-stationary, white and natural stationary), different vocalizations, different input sound levels and signal-to-noise ratios (SNR). We found that the presence of non-stationary noise increases the spiking activity of neurons, regardless of the SNR, input level or vocalization type. The presence of white or natural stationary noises however causes a great diversity of responses where the activity of sites could increase, decrease or remain unchanged. This shows that the noise invariance previously reported in the IC depends on the noisy conditions, which had not been observed before. We then address the problem of speech enhancement using information from the brain's processing in the presence of noise. It has been shown before that the brain waves of a listener strongly correlates with the speaker to which the listener attends. Given this, we design two speech enhancement algorithms with a denoising autoencoder structure, namely the Brain Enhanced Speech Denoiser (BESD) and U-shaped Brain Enhanced Speech Denoiser (U-BESD). These algorithms take advantage of the attended auditory information present in the brain activity of the listener to denoise a multi-talker speech. The U-BESD is built upon the BESD with the addition of skip connections and dilated convolutions. Compared to previously proposed approaches, BESD and U-BESD are trained in a single neural architecture, lowering the complexity of the algorithm. We investigate two experimental settings. In the first one, the attended speaker is known, referred to as the speaker-specific setting, and in the second one no prior information is available about the attended speaker, referred to as the speaker-independent setting. In the speaker-specific setting, we show that both the BESD and U-BESD algorithms surpass a similar denoising autoencoder. Moreover, we also show that in the speaker-independent setting, U-BESD surpasses the performance of the only known approach that also uses the brain's activity.Le système auditif est extrêmement efficace pour extraire de l’information pertinente en présence d’un bruit de fond. Par contre, les algorithmes de rehaussement de la parole, visant à supprimer le bruit d’un signal de parole bruité, n’atteignent pas des résultats proches de l’efficacité du système auditif. Le but de cette étude est donc d’abord d’étudier comment le bruit affecte l’activité neuronale dans le système auditif, puis d’utiliser l’activité cérébrale en présence de bruit pour concevoir de meilleurs algorithmes de rehaussement. Afin d’étudier comment le bruit peut affecter l’activité des neurones, nous concevons d’abord un modèle linéaire généralisé qui relie l’activité des neurones aux covariables intrinsèques et extrinsèques qui peuvent affecter leur activité, comme le bruit. De ce modèle, nous extrayons deux métriques, l’une qui permet d’étudier les effets du bruit sur l’activité neuronale et l’autre les effets relatifs sur cette activité de la vocalisation par rapport au bruit. Nous utilisons ces métriques pour analyser l’activité neuronale d’une structure du système auditif, nomée le colliculus inférieur (IC), enregistrée lors de la présentation de vocalisations bruitées. Nous avons étudié l’effet de différents types de bruits, différentes vocalisations, différents niveaux sonores d’entrée et différents rapports signal sur bruit (SNR). Nous avons constaté que la présence de bruit non stationnaire augmente l’activité des neurones, quel que soit le SNR, le niveau d’entrée ou le type de vocalisation. La présence de bruits stationnaires blancs ou naturels provoque cependant une grande diversité de réponses où l’activité des sites d’enregistrement pouvait augmenter, diminuer ou rester inchangée. Cela montre que l’invariance du bruit précédemment signalée dans l’IC dépend des conditions de bruit, ce qui n’avait pas été observé auparavant. Nous abordons ensuite le problème du rehaussement de la parole en utilisant de l’information provenant du cerveau. Il a été démontré auparavant que les ondes cérébrales d’un auditeur sont fortement corrélées avec le locuteur auquel l’auditeur porte attention. Compte tenu de cette corrélation, nous concevons deux algorithmes de rehaussement de la parole, le Brain Enhanced Speech Denoiser (BESD) et le U-shaped Brain Enhanced Speech Denoiser (U-BESD), qui tirent parti de l’information présente dans l’activité cérébrale de l’auditeur pour débruiter un signal de parole multi-locuteurs. L’U-BESD est construit à partir du BESD avec l’ajout de sauts de connexions (skip connections) et de convolutions dilatées. De plus, BESD et U-BESD sont constitués respectivement d’un seul réseau qui nécessite un seul entraînement, ce qui réduit la complexité de l’algorithme en comparaison avec les approches existantes. Nous étudions deux conditions expérimentales. Dans la première, le locuteur auquel l’auditeur porte attention est connu, et dans la seconde, ce locuteur n’est pas connu. Dans le cadre du locuteur connu, nous montrons que les algorithmes BESD et U-BESD surpassent un autoencodeur similaire. De plus, nous montrons également que dans le cadre du locuteur inconnu, le U-BESD surpasse les performances de la seule approche existante connue qui utilise également l’activité cérébrale

    Linear response for spiking neuronal networks with unbounded memory

    Get PDF
    We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allows us to predict the influence of a weak amplitude time-dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how linear response is explicitly related to neuronal dynamics with an example, the gIF model, introduced by M. Rudolph and A. Destexhe. This example illustrates the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike statistics. We illustrate our results with numerical simulations.Comment: 60 pages, 8 figure

    On the encoding of natural music in computational models and human brains

    Get PDF
    This article discusses recent developments and advances in the neuroscience of music to understand the nature of musical emotion. In particular, it highlights how system identification techniques and computational models of music have advanced our understanding of how the human brain processes the textures and structures of music and how the processed information evokes emotions. Musical models relate physical properties of stimuli to internal representations called features, and predictive models relate features to neural or behavioral responses and test their predictions against independent unseen data. The new frameworks do not require orthogonalized stimuli in controlled experiments to establish reproducible knowledge, which has opened up a new wave of naturalistic neuroscience. The current review focuses on how this trend has transformed the domain of the neuroscience of music

    Neuromorphic Auditory Perception by Neural Spiketrum

    Full text link
    Neuromorphic computing holds the promise to achieve the energy efficiency and robust learning performance of biological neural systems. To realize the promised brain-like intelligence, it needs to solve the challenges of the neuromorphic hardware architecture design of biological neural substrate and the hardware amicable algorithms with spike-based encoding and learning. Here we introduce a neural spike coding model termed spiketrum, to characterize and transform the time-varying analog signals, typically auditory signals, into computationally efficient spatiotemporal spike patterns. It minimizes the information loss occurring at the analog-to-spike transformation and possesses informational robustness to neural fluctuations and spike losses. The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks. We further investigate the algorithm-hardware co-designs through a neuromorphic cochlear prototype which demonstrates that our approach can provide a systematic solution for spike-based artificial intelligence by fully exploiting its advantages with spike-based computation.Comment: This work has been submitted to the IEEE for possible publicatio

    Deep Recurrent Encoder: A scalable end-to-end network to model brain signals

    Full text link
    Understanding how the brain responds to sensory inputs is challenging: brain recordings are partial, noisy, and high dimensional; they vary across sessions and subjects and they capture highly nonlinear dynamics. These challenges have led the community to develop a variety of preprocessing and analytical (almost exclusively linear) methods, each designed to tackle one of these issues. Instead, we propose to address these challenges through a specific end-to-end deep learning architecture, trained to predict the brain responses of multiple subjects at once. We successfully test this approach on a large cohort of magnetoencephalography (MEG) recordings acquired during a one-hour reading task. Our Deep Recurrent Encoding (DRE) architecture reliably predicts MEG responses to words with a three-fold improvement over classic linear methods. To overcome the notorious issue of interpretability of deep learning, we describe a simple variable importance analysis. When applied to DRE, this method recovers the expected evoked responses to word length and word frequency. The quantitative improvement of the present deep learning approach paves the way to better understand the nonlinear dynamics of brain activity from large datasets
    • …
    corecore