566 research outputs found

    Adaptive kernel canonical correlation analysis algorithms for nonparametric identification of Wiener and Hammerstein systems

    Get PDF
    This paper treats the identification of nonlinear systems that consist of a cascade of a linear channel and a nonlinearity, such as the well-known Wiener and Hammerstein systems. In particular, we follow a supervised identification approach that simultaneously identifies both parts of the nonlinear system. Given the correct restrictions on the identification problem, we show how kernel canonical correlation analysis (KCCA) emerges as the logical solution to this problem.We then extend the proposed identification algorithm to an adaptive version allowing to deal with time-varying systems. In order to avoid overfitting problems, we discuss and compare three possible regularization techniques for both the batch and the adaptive versions of the proposed algorithm. Simulations are included to demonstrate the effectiveness of the presented algorithm

    Identification of Input Nonlinear Control Autoregressive Systems Using Fractional Signal Processing Approach

    Get PDF
    A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control autoregressive (INCAR) models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter models and to use fractional least mean square algorithm (FLMS) for adaptation of unknown parameter vectors. The performance analyses of the proposed scheme are carried out with third-order Volterra least mean square (VLMS) and kernel least mean square (KLMS) algorithms based on convergence to the true values of INCAR systems. It is found that the proposed FLMS algorithm provides most accurate and convergent results than those of VLMS and KLMS under different scenarios and by taking the low-to-high signal-to-noise ratio

    Enhanced Nonlinear System Identification by Interpolating Low-Rank Tensors

    Full text link
    Function approximation from input and output data is one of the most investigated problems in signal processing. This problem has been tackled with various signal processing and machine learning methods. Although tensors have a rich history upon numerous disciplines, tensor-based estimation has recently become of particular interest in system identification. In this paper we focus on the problem of adaptive nonlinear system identification solved with interpolated tensor methods. We introduce three novel approaches where we combine the existing tensor-based estimation techniques with multidimensional linear interpolation. To keep the reduced complexity, we stick to the concept where the algorithms employ a Wiener or Hammerstein structure and the tensors are combined with the well-known LMS algorithm. The update of the tensor is based on a stochastic gradient decent concept. Moreover, an appropriate step size normalization for the update of the tensors and the LMS supports the convergence. Finally, in several experiments we show that the proposed algorithms almost always clearly outperform the state-of-the-art methods with lower or comparable complexity.Comment: 12 pages, 4 figures, 3 table

    Sparse Nonlinear MIMO Filtering and Identification

    Get PDF
    In this chapter system identification algorithms for sparse nonlinear multi input multi output (MIMO) systems are developed. These algorithms are potentially useful in a variety of application areas including digital transmission systems incorporating power amplifier(s) along with multiple antennas, cognitive processing, adaptive control of nonlinear multivariable systems, and multivariable biological systems. Sparsity is a key constraint imposed on the model. The presence of sparsity is often dictated by physical considerations as in wireless fading channel-estimation. In other cases it appears as a pragmatic modelling approach that seeks to cope with the curse of dimensionality, particularly acute in nonlinear systems like Volterra type series. Three dentification approaches are discussed: conventional identification based on both input and output samples, semi–blind identification placing emphasis on minimal input resources and blind identification whereby only output samples are available plus a–priori information on input characteristics. Based on this taxonomy a variety of algorithms, existing and new, are studied and evaluated by simulation

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC
    • …
    corecore