35,303 research outputs found

    Prototype of running clinical trials in an untrustworthy environment using blockchain.

    Get PDF
    Monitoring and ensuring the integrity of data within the clinical trial process is currently not always feasible with the current research system. We propose a blockchain-based system to make data collected in the clinical trial process immutable, traceable, and potentially more trustworthy. We use raw data from a real completed clinical trial, simulate the trial onto a proof of concept web portal service, and test its resilience to data tampering. We also assess its prospects to provide a traceable and useful audit trail of trial data for regulators, and a flexible service for all members within the clinical trials network. We also improve the way adverse events are currently reported. In conclusion, we advocate that this service could offer an improvement in clinical trial data management, and could bolster trust in the clinical research process and the ease at which regulators can oversee trials

    Creating Technology-enhanced Practice: A University-Home Care-Corporate Alliance

    Get PDF
    Insuring full benefit of consumer health informatics innovations requires integrating the technology into nursing practice, yet many valuable innovations are developed in research projects and never reach full integration. To avoid this outcome, a team of researchers partnered with a home care agency’s staff and patients and their corporate parent’s Information Systems and Research group to create a Technology-Enhanced Practice (TEP) designed to enhance care of home bound patients and their family care givers. The technology core of TEP, the HeartCare2 web site, was built in a collaborative process and deployed within the existing patient portal of the clinical partner. This paper describes the innovation and the experience of bringing it into full operation

    Dwarna : a blockchain solution for dynamic consent in biobanking

    Get PDF
    Dynamic consent aims to empower research partners and facilitate active participation in the research process. Used within the context of biobanking, it gives individuals access to information and control to determine how and where their biospecimens and data should be used. We present Dwarna—a web portal for ‘dynamic consent’ that acts as a hub connecting the different stakeholders of the Malta Biobank: biobank managers, researchers, research partners, and the general public. The portal stores research partners’ consent in a blockchain to create an immutable audit trail of research partners’ consent changes. Dwarna’s structure also presents a solution to the European Union’s General Data Protection Regulation’s right to erasure—a right that is seemingly incompatible with the blockchain model. Dwarna’s transparent structure increases trustworthiness in the biobanking process by giving research partners more control over which research studies they participate in, by facilitating the withdrawal of consent and by making it possible to request that the biospecimen and associated data are destroyed.peer-reviewe

    Supporting Collaborative Health Tracking in the Hospital: Patients' Perspectives

    Get PDF
    The hospital setting creates a high-stakes environment where patients' lives depend on accurate tracking of health data. Despite recent work emphasizing the importance of patients' engagement in their own health care, less is known about how patients track their health and care in the hospital. Through interviews and design probes, we investigated hospitalized patients' tracking activity and analyzed our results using the stage-based personal informatics model. We used this model to understand how to support the tracking needs of hospitalized patients at each stage. In this paper, we discuss hospitalized patients' needs for collaboratively tracking their health with their care team. We suggest future extensions of the stage-based model to accommodate collaborative tracking situations, such as hospitals, where data is collected, analyzed, and acted on by multiple people. Our findings uncover new directions for HCI research and highlight ways to support patients in tracking their care and improving patient safety

    The Role of Exchanges in Quality Improvement

    Get PDF
    Explores state options and considerations for driving healthcare quality improvement and delivery system reform at the plan and provider levels through insurance exchanges, including the need to involve all stakeholders in developing and executing policy

    Technology-Enhanced Practice for Patients with Chronic Cardiac Disease: Home Implementation and Evaluation

    Get PDF
    Objective: This 3-year field experiment engaged 60 nurses and 282 patients in the design and evaluation of an innovative home-care nursing model, referred to as technology-enhanced practice (TEP). Methods: Nurses using TEP augmented the usual care with a web-based resource (HeartCareII) that provided patients with self-management information, self-monitoring tools, and messaging services. Results: Patients exposed to TEP demonstrated better quality of life and self-management of chronic heart disease during the first 4 weeks, and were no more likely than patients in usual care to make unplanned visits to a clinician or hospital. Both groups demonstrated the same long-term symptom management and achievements in health status. Conclusion: This project provides new evidence that the purposeful creation of patient-tailored web resources within a hospital portal is possible; that nurses have difficulty with modifying their practice routines, even with a highly-tailored web resource; and that the benefits of this intervention are more discernable in the early postdischarge stages of care

    Increasing the Capacity of Primary Care Through Enabling Technology.

    Get PDF
    Primary care is the foundation of effective and high-quality health care. The role of primary care clinicians has expanded to encompass coordination of care across multiple providers and management of more patients with complex conditions. Enabling technology has the potential to expand the capacity for primary care clinicians to provide integrated, accessible care that channels expertise to the patient and brings specialty consultations into the primary care clinic. Furthermore, technology offers opportunities to engage patients in advancing their health through improved communication and enhanced self-management of chronic conditions. This paper describes enabling technologies in four domains (the body, the home, the community, and the primary care clinic) that can support the critical role primary care clinicians play in the health care system. It also identifies challenges to incorporating these technologies into primary care clinics, care processes, and workflow

    Will the Patient-Centered Medical Home Transform the Delivery of Health Care?

    Get PDF
    Explores various definitions of the medical home model, its components, rationale, effect on primary care, issues for implementation such as costs and payment methods, evidence of effectiveness, and healthcare reform provisions promoting it

    Clinical Performance of an Automated Reader in Interpreting Malaria Rapid Diagnostic Tests in Tanzania.

    Get PDF
    Parasitological confirmation of malaria is now recommended in all febrile patients by the World Health Organization (WHO) to reduce inappropriate use of anti-malarial drugs. Widespread implementation of rapid diagnostic tests (RDTs) is regarded as an effective strategy to achieve this goal. However, the quality of diagnosis provided by RDTs in remote rural dispensaries and health centres is not ideal. Feasible RDT quality control programmes in these settings are challenging. Collection of information regarding diagnostic events is also very deficient in low-resource countries. A prospective cohort of consecutive patients aged more than one year from both genders, seeking routine care for febrile episodes at dispensaries located in the Bagamoyo district of Tanzania, were enrolled into the study after signing an informed consent form. Blood samples were taken for thick blood smear (TBS) microscopic examination and malaria RDT (SD Bioline Malaria Antigen Pf/PanTM (SD RDT)). RDT results were interpreted by both visual interpretation and DekiReaderTM device. Results of visual interpretation were used for case management purposes. Microscopy was considered the "gold standard test" to assess the sensitivity and specificity of the DekiReader interpretation and to compare it to visual interpretation. In total, 1,346 febrile subjects were included in the final analysis. The SD RDT, when used in conjunction with the DekiReader and upon visual interpretation, had sensitivities of 95.3% (95% CI, 90.6-97.7) and 94.7% (95% CI, 89.8--97.3) respectively, and specificities of 94.6% (95% CI, 93.5--96.1) and 95.6% (95% CI, 94.2--96.6), respectively to gold standard. There was a high percentage of overall agreement between the two methods of interpretation. The sensitivity and specificity of the DekiReader in interpretation of SD RDTs were comparable to previous reports and showed high agreement to visual interpretation (>98%). The results of the study reflect the situation in real practice and show good performance characteristics of DekiReader on interpreting malaria RDTs in the hands of local laboratory technicians. They also suggest that a system like this could provide great benefits to the health care system. Further studies to look at ease of use by community health workers, and cost benefit of the system are warranted
    • …
    corecore