17,301 research outputs found

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2013 IEEE.This paper is concerned with the gain-constrained recursive filtering problem for a class of time-varying nonlinear stochastic systems with probabilistic sensor delays and correlated noises. The stochastic nonlinearities are described by statistical means that cover the multiplicative stochastic disturbances as a special case. The phenomenon of probabilistic sensor delays is modeled by introducing a diagonal matrix composed of Bernoulli distributed random variables taking values of 1 or 0, which means that the sensors may experience randomly occurring delays with individual delay characteristics. The process noise is finite-step autocorrelated. The purpose of the addressed gain-constrained filtering problem is to design a filter such that, for all probabilistic sensor delays, stochastic nonlinearities, gain constraint as well as correlated noises, the cost function concerning the filtering error is minimized at each sampling instant, where the filter gain satisfies a certain equality constraint. A new recursive filtering algorithm is developed that ensures both the local optimality and the unbiasedness of the designed filter at each sampling instant which achieving the pre-specified filter gain constraint. A simulation example is provided to illustrate the effectiveness of the proposed filter design approach.This work was supported in part by the National Natural Science Foundation of China by Grants 61273156, 61028008, 60825303, 61104125, and 11271103, National 973 Project by Grant 2009CB320600, the Fok Ying Tung Education Fund by Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China by Grant 2007B4, the State Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Robust filtering with randomly varying sensor delay: The finite-horizon case

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method

    Variance-constrained H∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements: The finite-horizon case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H ∞ finite-horizon filtering problem for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing measurements and error variance constraints. All the system parameters are time-varying and the uncertainty enters into the state matrix. The measurement missing phenomenon occurs in a random way, and the missing probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval . The stochastic nonlinearities under consideration here are described by statistical means which can cover several classes of well-studied nonlinearities. Sufficient conditions are derived for a finite-horizon filter to satisfy both the estimation error variance constraints and the prescribed H ∞ performance requirement. These conditions are expressed in terms of the feasibility of a series of recursive linear matrix inequalities (RLMIs). Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant GR/S27658/01, the Royal Society of the U.K., National Natural Science Foundation of China by Grants 60825303 and 60834003, National 973 Project of China by Grant 2009CB320600, Fok Ying Tung Education Foundation by Grant 111064, the Youth Science Fund of Heilongjiang Province of China by Grant QC2009C63, and by the Alexander von Humboldt Foundation of Germany

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements

    Get PDF
    Copyright @ 2012 ElsevierIn this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with multiple missing measurements over a finite horizon. Both deterministic and stochastic nonlinearities are included in the system model, where the stochastic nonlinearities are described by statistical means that could reflect the multiplicative stochastic disturbances. The phenomenon of measurement missing occurs in a random way and the missing probability for each sensor is governed by an individual random variable satisfying a certain probability distribution over the interval [0,1]. Such a probability distribution is allowed to be any commonly used distribution over the interval [0,1] with known conditional probability. The aim of the addressed filtering problem is to design a filter such that, in the presence of both the stochastic nonlinearities and multiple missing measurements, there exists an upper bound for the filtering error covariance. Subsequently, such an upper bound is minimized by properly designing the filter gain at each sampling instant. It is shown that the desired filter can be obtained in terms of the solutions to two Riccati-like difference equations that are of a form suitable for recursive computation in online applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design scheme.This work was supported in part by the National 973 Project under Grant 2009CB320600, National Natural Science Foundation of China under Grants 61028008, 61134009 and 60825303, the State Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Kalman-Takens filtering in the presence of dynamical noise

    Full text link
    The use of data assimilation for the merging of observed data with dynamical models is becoming standard in modern physics. If a parametric model is known, methods such as Kalman filtering have been developed for this purpose. If no model is known, a hybrid Kalman-Takens method has been recently introduced, in order to exploit the advantages of optimal filtering in a nonparametric setting. This procedure replaces the parametric model with dynamics reconstructed from delay coordinates, while using the Kalman update formulation to assimilate new observations. We find that this hybrid approach results in comparable efficiency to parametric methods in identifying underlying dynamics, even in the presence of dynamical noise. By combining the Kalman-Takens method with an adaptive filtering procedure we are able to estimate the statistics of the observational and dynamical noise. This solves a long standing problem of separating dynamical and observational noise in time series data, which is especially challenging when no dynamical model is specified
    corecore