2,571 research outputs found

    Danae++: A smart approach for denoising underwater attitude estimation

    Get PDF
    One of the main issues for the navigation of underwater robots consists in accurate vehicle positioning, which heavily depends on the orientation estimation phase. The systems employed to this end are affected by different noise typologies, mainly related to the sensors and to the irregular noise of the underwater environment. Filtering algorithms can reduce their effect if opportunely con-figured, but this process usually requires fine techniques and time. This paper presents DANAE++, an improved denoising autoencoder based on DANAE (deep Denoising AutoeNcoder for Attitude Estimation), which is able to recover Kalman Filter (KF) IMU/AHRS orientation estimations from any kind of noise, independently of its nature. This deep learning-based architecture already proved to be robust and reliable, but in its enhanced implementation significant improvements are obtained in terms of both results and performance. In fact, DANAE++ is able to denoise the three angles describing the attitude at the same time, and that is verified also using the estimations provided by an extended KF. Further tests could make this method suitable for real-time applications in navigation tasks

    Real-time detection of auditory : steady-state brainstem potentials evoked by auditory stimuli

    Get PDF
    The auditory steady-state response (ASSR) is advantageous against other hearing techniques because of its capability in providing objective and frequency specific information. The objectives are to reduce the lengthy test duration, and improve the signal detection rate and the robustness of the detection against the background noise and unwanted artefacts.Two prominent state estimation techniques of Luenberger observer and Kalman filter have been used in the development of the autonomous ASSR detection scheme. Both techniques are real-time implementable, while the challenges faced in the application of the observer and Kalman filter techniques are the very poor SNR (could be as low as −30dB) of ASSRs and unknown statistics of the noise. Dual-channel architecture is proposed, one is for the estimate of sinusoid and the other for the estimate of the background noise. Simulation and experimental studies were also conducted to evaluate the performances of the developed ASSR detection scheme, and to compare the new method with other conventional techniques. In general, both the state estimation techniques within the detection scheme produced comparable results as compared to the conventional techniques, but achieved significant measurement time reduction in some cases. A guide is given for the determination of the observer gains, while an adaptive algorithm has been used for adjustment of the gains in the Kalman filters.In order to enhance the robustness of the ASSR detection scheme with adaptive Kalman filters against possible artefacts (outliers), a multisensory data fusion approach is used to combine both standard mean operation and median operation in the ASSR detection algorithm. In addition, a self-tuned statistical-based thresholding using the regression technique is applied in the autonomous ASSR detection scheme. The scheme with adaptive Kalman filters is capable of estimating the variances of system and background noise to improve the ASSR detection rate

    Multichannel Online Dereverberation based on Spectral Magnitude Inverse Filtering

    Full text link
    This paper addresses the problem of multichannel online dereverberation. The proposed method is carried out in the short-time Fourier transform (STFT) domain, and for each frequency band independently. In the STFT domain, the time-domain room impulse response is approximately represented by the convolutive transfer function (CTF). The multichannel CTFs are adaptively identified based on the cross-relation method, and using the recursive least square criterion. Instead of the complex-valued CTF convolution model, we use a nonnegative convolution model between the STFT magnitude of the source signal and the CTF magnitude, which is just a coarse approximation of the former model, but is shown to be more robust against the CTF perturbations. Based on this nonnegative model, we propose an online STFT magnitude inverse filtering method. The inverse filters of the CTF magnitude are formulated based on the multiple-input/output inverse theorem (MINT), and adaptively estimated based on the gradient descent criterion. Finally, the inverse filtering is applied to the STFT magnitude of the microphone signals, obtaining an estimate of the STFT magnitude of the source signal. Experiments regarding both speech enhancement and automatic speech recognition are conducted, which demonstrate that the proposed method can effectively suppress reverberation, even for the difficult case of a moving speaker.Comment: Paper submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing. IEEE Signal Processing Letters, 201

    Industrial applications of the Kalman filter:a review

    Get PDF
    International audienc

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl

    Hyper-parameter tuning and feature extraction for asynchronous action detection from sub-thalamic nucleus local field potentials

    Get PDF
    Introduction: Decoding brain states from subcortical local field potentials (LFPs) indicative of activities such as voluntary movement, tremor, or sleep stages, holds significant potential in treating neurodegenerative disorders and offers new paradigms in brain-computer interface (BCI). Identified states can serve as control signals in coupled human-machine systems, e.g., to regulate deep brain stimulation (DBS) therapy or control prosthetic limbs. However, the behavior, performance, and efficiency of LFP decoders depend on an array of design and calibration settings encapsulated into a single set of hyper-parameters. Although methods exist to tune hyper-parameters automatically, decoders are typically found through exhaustive trial-and-error, manual search, and intuitive experience. Methods: This study introduces a Bayesian optimization (BO) approach to hyper-parameter tuning, applicable through feature extraction, channel selection, classification, and stage transition stages of the entire decoding pipeline. The optimization method is compared with five real-time feature extraction methods paired with four classifiers to decode voluntary movement asynchronously based on LFPs recorded with DBS electrodes implanted in the subthalamic nucleus of Parkinson’s disease patients. Results: Detection performance, measured as the geometric mean between classifier specificity and sensitivity, is automatically optimized. BO demonstrates improved decoding performance from initial parameter setting across all methods. The best decoders achieve a maximum performance of 0.74 ± 0.06 (mean ± SD across all participants) sensitivity-specificity geometric mean. In addition, parameter relevance is determined using the BO surrogate models. Discussion: Hyper-parameters tend to be sub-optimally fixed across different users rather than individually adjusted or even specifically set for a decoding task. The relevance of each parameter to the optimization problem and comparisons between algorithms can also be difficult to track with the evolution of the decoding problem. We believe that the proposed decoding pipeline and BO approach is a promising solution to such challenges surrounding hyper-parameter tuning and that the study’s findings can inform future design iterations of neural decoders for adaptive DBS and BCI

    Improving Channel Estimation and Tracking Performance in Distributed MIMO Communication Systems

    Get PDF
    This dissertation develops and analyzes several techniques for improving channel estimation and tracking performance in distributed multi-input multi-output (D-MIMO) wireless communication systems. D-MIMO communication systems have been studied for the last decade and are known to offer the benefits of antenna arrays, e.g., improved range and data rates, to systems of single-antenna devices. D-MIMO communication systems are considered a promising technology for future wireless standards including advanced cellular communication systems. This dissertation considers problems related to channel estimation and tracking in D-MIMO communication systems and is focused on three related topics: (i) characterizing oscillator stability for nodes in D-MIMO systems, (ii) the development of an optimal unified tracking framework and a performance comparison to previously considered sub-optimal tracking approaches, and (iii) incorporating independent kinematics into dynamic channel models and using accelerometers to improve channel tracking performance. A key challenge of D-MIMO systems is estimating and tracking the time-varying channels present between each pair of nodes in the system. Even if the propagation channel between a pair of nodes is time-invariant, the independent local oscillators in each node cause the carrier phases and frequencies and the effective channels between the nodes to have random time-varying phase offsets. The first part of this dissertation considers the problem of characterizing the stability parameters of the oscillators used as references for the transmitted waveforms. Having good estimates of these parameters is critical to facilitate optimal tracking of the phase and frequency offsets. We develop a new method for estimating these oscillator stability parameters based on Allan deviation measurements and compare this method to several previously developed parameter estimation techniques based on innovation covariance whitening. The Allan deviation method is validated with both simulations and experimental data from low-precision and high-precision oscillators. The second part of this dissertation considers a D-MIMO scenario with NtN_t transmitters and NrN_r receivers. While there are NtimesNrN_t imes N_r node-to-node pairwise channels in such a system, there are only Nt+NrN_t + N_r independent oscillators. We develop a new unified tracking model where one Kalman filter jointly tracks all of the pairwise channels and compare the performance of unified tracking to previously developed suboptimal local tracking approaches where the channels are not jointly tracked. Numerical results show that unified tracking tends to provide similar beamforming performance to local tracking but can provide significantly better nullforming performance in some scenarios. The third part of this dissertation considers a scenario where the transmit nodes in a D-MIMO system have independent kinematics. In general, this makes the channel tracking problem more difficult since the independent kinematics make the D-MIMO channels less predictable. We develop dynamics models which incorporate the effects of acceleration on oscillator frequency and displacement on propagation time. The tracking performance of a system with conventional feedback is compared to a system with conventional feedback and local accelerometer measurements. Numerical results show that the tracking performance is significantly improved with local accelerometer measurements

    ‘Did the speaker change?’: Temporal tracking for overlapping speaker segmentation in multi-speaker scenarios

    Get PDF
    Diarization systems are an essential part of many speech processing applications, such as speaker indexing, improving automatic speech recognition (ASR) performance and making single speaker-based algorithms available for use in multi-speaker domains. This thesis will focus on the first task of the diarization process, that being the task of speaker segmentation which can be thought of as trying to answer the question ‘Did the speaker change?’ in an audio recording. This thesis starts by showing that time-varying pitch properties can be used advantageously within the segmentation step of a multi-talker diarization system. It is then highlighted that an individual’s pitch is smoothly varying and, therefore, can be predicted by means of a Kalman filter. Subsequently, it is shown that if the pitch is not predictable, then this is most likely due to a change in the speaker. Finally, a novel system is proposed that uses this approach of pitch prediction for speaker change detection. This thesis then goes on to demonstrate how voiced harmonics can be useful in detecting when more than one speaker is talking, such as during overlapping speaker activity. A novel system is proposed to track multiple harmonics simultaneously, allowing for the determination of onsets and end-points of a speaker’s utterance in the presence of an additional active speaker. This thesis then extends this work to explore the use of a new multimodal approach for overlapping speaker segmentation that tracks both the fundamental frequency (F0) and direction of arrival (DoA) of each speaker simultaneously. The proposed multiple hypothesis tracking system, which simultaneously tracks both features, shows an improvement in segmentation performance when compared to tracking these features separately. Lastly, this thesis focuses on the DoA estimation part of the newly proposed multimodal approach. It does this by exploring a polynomial extension to the multiple signal classification (MUSIC) algorithm, spatio-spectral polynomial (SSP)-MUSIC, and evaluating its performance when using speech sound sources.Open Acces
    • …
    corecore