90 research outputs found

    Ka-Band LTCC Stacked Substrate Integrated Waveguide Bandpass Filter

    Get PDF
    A Ka-band substrate integrated waveguide bandpass filter has been designed and fabricated using low temperature co-fired ceramic (LTCC) technology. The in-house developed SICCAS-K5F3 material with a permittivity of 6.2 and a loss tangent of 0.002 was used. The size and surface area of the proposed bandpass filter are reduced by exploiting vertical coupling in vertically laminated three-dimensional structures. The coupling between adjacent cavities is realized by a narrow slot. A vertical transition structure between the coplanar-waveguide feed line and the substrate integrated waveguide is adopted to facilitate the internal signal connection. The demonstrated third-order filter has a compact size of 6.79 mm×4.13 mm×1.34 mm (0.63λ0  × 0.38λ0  × 0.12λ0) and exhibits good performance with a low insertion loss of 1.74 dB at 27.73 GHz and a 3 dB fractional bandwidth of 10 %

    Analysis of Substrate Integrated Waveguide (SIW) Resonator and Design of Miniaturized SIW Bandpass Filter

    Get PDF
    In this paper, the substrate integrated waveguide (SIW) resonator is designed to study the influence of dielectric materials on its operating parameters (insertion loss, fractional bandwidth and unloaded Q-factor). The results obtained show that the use of high permittivity substrate in the SIW resonator by increasing its thickness allows reducing the size of resonator by causing the increase in its unloaded Q-factor. A SIW bandpass filter is designed using low temperature co-fired ceramic (LTCC) technology and high permittivity substrate. The filter has a fractional bandwidth of 27 % centered at 14.32 GHz with insertion loss of 0.7 dB

    LIGA cavity resonators and filters for microwave and millimetre-wave applications

    Get PDF
    High performance microwave cavities for various circuits in the front-end of transceivers such as filters, diplexers, and oscillators have conventionally been built with rectangular or cylindrical metallic waveguides, which typically have low loss, high quality (Q) factor, and higher power handling capability. However such waveguide cavity based circuits made by traditional metal machining techniques tend to be costly, particularly for complex multiple cavity based circuits, and not well suited to high volume commercial applications and integration with planar microwave integrated circuits. As commercial transceiver applications progress toward higher microwave and millimetre-wave frequencies, the use of waveguide based circuits for compact, highly integrated transceivers is becoming feasible, along with an increasing need for cost effective batch fabrication processes for realizing complex metallic cavity circuits without sacrificing structural quality and performance. It is expected that significant advancements in both microwave performance and integration will be achieved through the development of novel technologies for realizing vertically oriented three-dimensional (3-D) structures.Although improvement has been made on increasing the resonator Q factor by exploiting silicon micromachining and low-temperature cofired ceramics (LTCC) techniques, there are some drawbacks inherent to silicon cavity micromachining and LTCC technology, including non-vertical sidewalls, depth limitations, and surface roughness for the silicon resonator, and dielectric and radiation loss for LTCC resonator.Polymer-based fabrication is a promising alternative to silicon etching and LTCC technologies for the batch fabrication of ultra-deep microwave cavity structures. In particular, deep X-ray lithography (XRL), as part of the LIGA process, is a microfabrication technology for precisely structuring polymers, and is increasingly being applied to RF/microwave microstructures. In addition to precise patterning capabilities, deep XRL is able to structure ultra-deep cavities due to the penetration ability of hard X-rays. Cavities of several millimetres are possible in a single lithographic exposure, and with excellent sidewall quality, including verticality near 90 degrees and surface roughness on the order of tens of nanometres. These structured polymers are subsequently used as electroforming templates for fabricating metal structures with correspondingly good sidewall quality.This thesis investigates the possibility of realizing high-Q cavity resonators and filters at microwave frequencies using the LIGA microfabrication process. Finite element method (FEM) electromagnetic simulation results based on the cavity models representing different fabrication conditions show that smooth LIGA cavity structures result in promising Q improvement over silicon and LTCC structures. And the potential advantages of LIGA resonators are more dramatic with cavity height and increasing operating frequency. Deep polymer cavity structures (1.8 mm) fabricated using deep XRL demonstrate excellent sidewall verticality in the PMMA structure, with only slight shrinkage at the top surface of 8.5 2.5 mm in either lateral dimensions. This corresponds to sidewalls with verticality between 89.82o and 89.9o. The structure polymers are subsequently used as templates for metal electroforming to produce cavity resonators. The performance of the resonator is measured in a planar environment. A RT/duroid6010 soft substrate patterned with coupling structures forms the sixth side, and thus completes the cavity. Despite the rather crude test assembly for the sixth side made by clamping, the measured resonator has a high unloaded Q of 2122.2 85 at the resonant frequency of 24 GHz, indicating that LIGA cavities are especially promising for high performance applications. The relatively simple, single-step lithographic exposure also facilitates extension to more structurally complicated waveguide and multiple cavity-based circuits. This research work also proposes a high performance ``split-post' 3-pole cylindrical post coupled Chebyshev bandpass filter suitable for LIGA fabrication. In addition to potentially batch fabricating such a filter lithographically by exposing the entire waveguide depth in a single exposure, the filter structures composed of three cavities with metallic multi-post coupling would be extremely difficult to fabricate using traditional machining techniques, due to the extremely fine post structure and high vertical aspect ratio required. However, these types of structures could be ideal for LIGA fabrication, which offers sub-micron features, aspect ratios of 100:1 or higher, resist thicknesses of up to 3 mm, and almost vertical and optically smooth sidewalls. Also, representative LIGA sidewall roughness is used to predict very low loss and high performance, suggesting that complicated structures with multiple resonator circuits and high internal components with high aspect ratios are possible

    DESIGN AND ANALYSIS OF SUBSTRATE INTEGRATED WAVEGUIDE BASED FILTERING ANTENNAS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and Sub-THz Applications

    Get PDF
    The millimeter-wave (mmWave) and sub-terahertz (sub-THz) bands have received much attention in recent years for wireless communication and high-resolution imaging radar applications. The objective of this paper is to provide an overview of recent developments in the design and technical implementation of GW-based antenna systems and components. This paper begins by comparing the GW-transmission line to other widely used transmission lines for the mmWave and sub-THz bands. Furthermore, the basic operating principle and possible implementation technique of the GW-technology are briefly discussed. In addition, various antennas and passive components have been developed based on the GW-technology. Despite its advantages in controlling electromagnetic wave propagation, it is also widely used for the packaging of electronic components such as transceivers and power amplifiers. This article also provided an overview of the current manufacturing technologies that are commonly used for the fabrication of GW-components. Finally, the practical applications and industry interest in GW technology developments for mmWave and sub-THz applications have been scrutinized.Funding Agencies|European Union - Marie Sklodowska-Curie [766231WAVECOMBEH2020-MSCA-ITN-2017]</p

    Compact RF Integration and Packaging Solutions Based on Metasurfaces for Millimeter-Wave Applications

    Get PDF
    The millimeter-wave frequency range has got a lot of attention over the past few years because it contains unused frequency spectrum resources that are suitable for delivering Gbit/s end-user access in areas with high user density. Due to the limited output power that the current RF active components can deliver in millimeter-wave frequencies, antennas with the features of low profile, high gain, high efficiency and low cost are needed to compensate free space path loss and increase the communication distance for the emerging high data rate wireless systems. Moreover, it is desired to have a compact system by integration of the antenna with passive and active components at high frequencies.In order to move towards millimeter-wave frequencies we need to face significant hardware challenges, such as active and passive components integration, packaging problems, and cost-effective manufacturing techniques. The gap waveguide technology shows interesting characteristics as a new waveguide structure. The main goal of this thesis is to demonstrate the advantages of gap waveguide technology as an alternative to the traditional guiding structures to overcome the problem of good electrical contact due to mechanical assembly with low loss. This thesis mainly focuses on high-gain planar array antenna design, integration with passive and active components, and packaging based on gap waveguide technology. \ua0We introduce several low-profile multilayer corporate-fed slot array antennas with high gain, high efficiency and wide impedance bandwidth operating at the millimeter-wave frequency band. A system demonstration consisting of two compact integrated antenna-diplexer and Tx/Rx MMICs for Frequency-division duplex (FDD) low latency wireless backhaul links at E-band is presented to show the advantages of gap waveguide technology in building a complete radio front-end. Moreover, the use of several new manufacturing methods, such as die-sink Electric Discharge Machining (EDM), direct metal 3-D printing, and micro-molding are evaluated to fabricate gap waveguide components in a more effective way.Furthermore, a novel air-filled transmission line, so-called multi-layer waveguide (MLW), that exhibits great advantages such as low-cost, simple fabrication, and low loss, even for frequencies beyond 100 GHz, is presented for the first time. To constitute an MLW structure, a rectangular waveguide transmission line is formed by stacking several thin metal layers without any electrical and galvanic contact requirement among the layers. The proposed concept could become a suitable approach to design millimeter-wave high-performance passive waveguide components, and to be used in active and passive components integration ensuring mass production at the same time

    Microwave Filters Based on New Design Concepts in Several Technologies with Emphasis on the Printed Ridge Gap Waveguide Technology

    Get PDF
    Microwave filters have been an interesting research topic for more than half a century. Since any communication system is required to use some microwave filters, considerable effort is being made to optimize the performance and size of these filters. As operating frequency is on the rise, filter design becomes more challenging with the demand for low insertion losses and low cost. As low cost might require the use of printed circuit technology, high performance demands waveguide technology that drives the cost to unacceptable levels. There is a need for a new technology that achieves both requirements of low cost and high performance. The new technology of ridge gap waveguide that was proposed in 2011 shows promising characteristics as a new guiding structure, especially for high-frequency bands. Therefore, it is necessary to design and propose classic or even new filtering devices on this technology. Here, we propose the use of this technology to design practical and efficient microwave filters. The work of this thesis can be divided into three major parts: (1) Developing efficient codes and methods to optimize the computationally expensive structure of ridge gap waveguide or any other large-scale microwave filter device. (2) Characterizing cavity structures on ridge gap waveguide and using them in the design of simple microwave filters. (3) The third part will discuss more advanced and practical filters, especially using printed ridge gap waveguide technology. The ultimate goal of this thesis is to design and propose state of the art designs in the field of microwave filters that can satisfy the requirements of today’s advanced communication systems and to be cost efficient and compete with other rival technologies. We achieved these objectives using efficient optimization, efficient design techniques, and fabrication of the models using advanced technology

    Compact multilayer SRR-loaded integrated waveguide filters on liquid crystal polymer substrate

    Get PDF
    This article presents a compact bandpass filters based on rectangular substrate integrated waveguides and split ring resonators for implementation in multilayer LCP technology were proposed. Filter which included two sections of E-resonator and SRR was tuned up to central frequency of about 28 GHz and bandwidth of about 2 GHz

    Development of micromachined millimeter-wave modules for next-generation wireless transceiver front-ends

    Get PDF
    This thesis discusses the design, fabrication, integration and characterization of millimeter wave passive components using polymer-core-conductor surface micromachining technologies. Several antennas, including a W-band broadband micromachined monopole antenna on a lossy glass substrate, and a Ka-band elevated patch antenna, and a V-band micromachined horn antenna, are presented. All antennas have advantages such as a broad operation band and high efficiency. A low-loss broadband coupler and a high-Q cavity for millimeter-wave applications, using surface micromachining technologies is reported using the same technology. Several low-loss all-pole band-pass filters and transmission-zero filters are developed, respectively. Superior simulation and measurement results show that polymer-core-conductor surface micromachining is a powerful technology for the integration of high-performance cavity, coupler and filters. Integration of high performance millimeter-wave transceiver front-end is also presented for the first time. By elevating a cavity-filter-based duplexer and a horn antenna on top of the substrate and using air as the filler, the dielectric loss can be eliminated. A full-duplex transceiver front-end integrated with amplifiers are designed, fabricated, and comprehensively characterized to demonstrate advantages brought by this surface micromachining technology. It is a low loss and substrate-independent solution for millimeter-wave transceiver integration.Ph.D.Committee Chair: John Papapolymerou; Committee Chair: Manos Tentzeris; Committee Member: Gordon Stuber; Committee Member: John Cressler; Committee Member: John Z. Zhang; Committee Member: Joy Laska
    corecore