11 research outputs found

    Multivariate hydrometeorological extreme events and their impacts on vegetation: potential methods and applications

    Get PDF
    Trockenheiten und Hitzewellen beeinflussen unsere Gesellschaft und die Vegetation. Insbesondere im Zusammenhang mit dem Klimawandel sind die Auswirkungen auf die Vegetation von besonderer Bedeutung. Im globalen Kohlenstoffkreislauf sind terrestrische ร–kosysteme normalerweise Senken von Kohlenstoffdioxid, kรถnnen sich aber wรคhrend und nach Klimaextremereignissen in Kohlenstoffquellen verwandeln. Ein entscheidender Aspekt hierbei ist die Rolle verschiedener Pflanzenarten und Vegetationstypen auf verschiedenen Skalen, die die Auswirkungen auf den Kohlenstoffkreislauf beeinflussen. Obwohl durch physiologische Unterschiede zwischen verschiedenen Pflanzenarten unterschiedliche Reaktionen auf Extremereignisse naheliegen, sind diese Unterschiede auf globaler Ebene nicht systematisch ausgewertet und vollstรคndig verstanden. Ein weiter Aspekt ist, dass Klimaextremereignissen von Natur aus multivariat sind. Beispielsweise kann heiรŸe Luft mehr Wasser aufnehmen als kalte Luft. Extremereignisse mit starken Auswirkungen waren in der Vergangenheit hรคufig multivariat, wie beispielsweise in Europa 2003, Russland 2012, oder den USA 2012. Diese multivariate Natur von Klimaextremen erfordert eine multivariate Perspektive auf diese Ereignisse. Bisher werden meistens einzelne Variablen zu Detektion von Extremereignissen genutzt und keine Kovariation oder Nichtlinearitรคten berรผcksichtigt. Neue generische Workflows, die solche multivariaten Strukturen berรผcksichtigen, mรผssen erst entwickelt oder aus anderen Disziplinen รผbertragen werden, um uns eine multivariate Perspektive auf Klimaextreme zu bieten. Das รผbergeordnete Ziel der Dissertation ist es, die Erkennung und das Verstรคndnis von Klimaextremen und deren Auswirkungen auf die Vegetation zu verbessern, indem eine breitere multivariate Perspektive ermรถglicht wird, die bisherige Ansรคtze zur Erkennung von Extremereignissen ergรคnzt

    ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—์„œ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ†ตํ•œ ์ง€๊ตฌ๊ณผํ•™ ์ž๋ฃŒ์ƒ์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2022. 8. ์กฐ์–‘๊ธฐ.To investigate changes and phenomena on Earth, many scientists use high-resolution-model results based on numerical models or develop and utilize machine learning-based prediction models with observed data. As information technology advances, there is a need for a practical methodology for generating local and global high-resolution numerical modeling and machine learning-based earth science data. This study recommends data generation and processing using high-resolution numerical models of earth science and machine learning-based prediction models in a cloud environment. To verify the reproducibility and portability of high-resolution numerical ocean model implementation on cloud computing, I simulated and analyzed the performance of a numerical ocean model at various resolutions in the model domain, including the Northwest Pacific Ocean, the East Sea, and the Yellow Sea. With the containerization method, it was possible to respond to changes in various infrastructure environments and achieve computational reproducibility effectively. The data augmentation of subsurface temperature data was performed using generative models to prepare large datasets for model training to predict the vertical temperature distribution in the ocean. To train the prediction model, data augmentation was performed using a generative model for observed data that is relatively insufficient compared to satellite dataset. In addition to observation data, HYCOM datasets were used for performance comparison, and the data distribution of augmented data was similar to the input data distribution. The ensemble method, which combines stand-alone predictive models, improved the performance of the predictive model compared to that of the model based on the existing observed data. Large amounts of computational resources were required for data synthesis, and the synthesis was performed in a cloud-based graphics processing unit environment. High-resolution numerical ocean model simulation, predictive model development, and the data generation method can improve predictive capabilities in the field of ocean science. The numerical modeling and generative models based on cloud computing used in this study can be broadly applied to various fields of earth science.์ง€๊ตฌ์˜ ๋ณ€ํ™”์™€ ํ˜„์ƒ์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๊ณผํ•™์ž๋“ค์€ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ํ•ด์ƒ๋„ ๋ชจ๋ธ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๊ด€์ธก๋œ ๋ฐ์ดํ„ฐ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํ™œ์šฉํ•œ๋‹ค. ์ •๋ณด๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ง€์—ญ ๋ฐ ์ „ ์ง€๊ตฌ์ ์ธ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ง€๊ตฌ๊ณผํ•™ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€๊ตฌ๊ณผํ•™์˜ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ๋ชจ๋ธ๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐ ์ฒ˜๋ฆฌ๊ฐ€ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌํ˜„๋  ์ˆ˜ ์žˆ์Œ์„ ์ œ์•ˆํ•œ๋‹ค. ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์—์„œ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ ๊ตฌํ˜„์˜ ์žฌํ˜„์„ฑ๊ณผ ์ด์‹์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ถ์„œํƒœํ‰์–‘, ๋™ํ•ด, ํ™ฉํ•ด ๋“ฑ ๋ชจ๋ธ ์˜์—ญ์˜ ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„์—์„œ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค. ์ปจํ…Œ์ด๋„ˆํ™” ๋ฐฉ์‹์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ธํ”„๋ผ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๊ณ  ๊ณ„์‚ฐ ์žฌํ˜„์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์˜ ์ ์šฉ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ƒ์„ฑ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ํ‘œ์ธต ์ดํ•˜ ์˜จ๋„ ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์‹คํ–‰ํ•˜์—ฌ ํ•ด์–‘์˜ ์ˆ˜์ง ์˜จ๋„ ๋ถ„ํฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ ํ›ˆ๋ จ์„ ์œ„ํ•œ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ค€๋น„ํ–ˆ๋‹ค. ์˜ˆ์ธก๋ชจ๋ธ ํ›ˆ๋ จ์„ ์œ„ํ•ด ์œ„์„ฑ ๋ฐ์ดํ„ฐ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋ถ€์กฑํ•œ ๊ด€์ธก ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ์ƒ์„ฑ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ฑ๋Šฅ ๋น„๊ต์—๋Š” ๊ด€์ธก ๋ฐ์ดํ„ฐ ์™ธ์—๋„ HYCOM ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์™€ ์œ ์‚ฌํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋…๋ฆฝํ˜• ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ์•™์ƒ๋ธ” ๋ฐฉ์‹์€ ๊ธฐ์กด ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ๋น„ํ•ด ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๋ฐ์ดํ„ฐํ•ฉ์„ฑ์„ ์œ„ํ•ด ๋งŽ์€ ์–‘์˜ ๊ณ„์‚ฐ ์ž์›์ด ํ•„์š”ํ–ˆ์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ ํ•ฉ์„ฑ์€ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ GPU ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ, ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ๋ฒ•์€ ํ•ด์–‘ ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ๊ธฐ๋ฐ˜์˜ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง ๋ฐ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์ง€๊ตฌ ๊ณผํ•™์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.1. General Introduction 1 2. Performance of numerical ocean modeling on cloud computing 6 2.1. Introduction 6 2.2. Cloud Computing 9 2.2.1. Cloud computing overview 9 2.2.2. Commercial cloud computing services 12 2.3. Numerical model for performance analysis of commercial clouds 15 2.3.1. High Performance Linpack Benchmark 15 2.3.2. Benchmark Sustainable Memory Bandwidth and Memory Latency 16 2.3.3. Numerical Ocean Model 16 2.3.4. Deployment of Numerical Ocean Model and Benchmark Packages on Cloud Clusters 19 2.4. Simulation results 21 2.4.1. Benchmark simulation 21 2.4.2. Ocean model simulation 24 2.5. Analysis of ROMS performance on commercial clouds 26 2.5.1. Performance of ROMS according to H/W resources 26 2.5.2. Performance of ROMS according to grid size 34 2.6. Summary 41 3. Reproducibility of numerical ocean model on the cloud computing 44 3.1. Introduction 44 3.2. Containerization of numerical ocean model 47 3.2.1. Container virtualization 47 3.2.2. Container-based architecture for HPC 49 3.2.3. Container-based architecture for hybrid cloud 53 3.3. Materials and Methods 55 3.3.1. Comparison of traditional and container based HPC cluster workflows 55 3.3.2. Model domain and datasets for numerical simulation 57 3.3.3. Building the container image and registration in the repository 59 3.3.4. Configuring a numeric model execution cluster 64 3.4. Results and Discussion 74 3.4.1. Reproducibility 74 3.4.2. Portability and Performance 76 3.5. Conclusions 81 4. Generative models for the prediction of ocean temperature profile 84 4.1. Introduction 84 4.2. Materials and Methods 87 4.2.1. Model domain and datasets for predicting the subsurface temperature 87 4.2.2. Model architecture for predicting the subsurface temperature 90 4.2.3. Neural network generative models 91 4.2.4. Prediction Models 97 4.2.5. Accuracy 103 4.3. Results and Discussion 104 4.3.1. Data Generation 104 4.3.2. Ensemble Prediction 109 4.3.3. Limitations of this study and future works 111 4.4. Conclusion 111 5. Summary and conclusion 114 6. References 118 7. Abstract (in Korean) 140๋ฐ•

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earthโ€™s atmosphereโ€“ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    SPICA:revealing the hearts of galaxies and forming planetary systems : approach and US contributions

    Get PDF
    How did the diversity of galaxies we see in the modern Universe come to be? When and where did stars within them forge the heavy elements that give rise to the complex chemistry of life? How do planetary systems, the Universe's home for life, emerge from interstellar material? Answering these questions requires techniques that penetrate dust to reveal the detailed contents and processes in obscured regions. The ESA-JAXA Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is designed for this, with a focus on sensitive spectroscopy in the 12 to 230 micron range. SPICA offers massive sensitivity improvements with its 2.5-meter primary mirror actively cooled to below 8 K. SPICA one of 3 candidates for the ESA's Cosmic Visions M5 mission, and JAXA has is committed to their portion of the collaboration. ESA will provide the silicon-carbide telescope, science instrument assembly, satellite integration and testing, and the spacecraft bus. JAXA will provide the passive and active cooling system (supporting the

    The Apertif Surveys:The First Six Months

    Get PDF
    Apertif is a new phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), greatly increasing its field of view and turning it into a natural survey instrument. In July 2019, the Apertif legacy surveys commenced; these are a time-domain survey and a two-tiered imaging survey, with a shallow and medium-deep component. The time-domain survey searches for new (millisecond) pulsars and fast radio bursts (FRBs). The imaging surveys provide neutral hydrogen (HI), radio continuum and polarization data products. With a bandwidth of 300 MHz, Apertif can detect HI out to a redshift of 0.26. The key science goals to be accomplished by Apertif include localization of FRBs (including real-time public alerts), the role of environment and interaction on galaxy properties and gas removal, finding the smallest galaxies, connecting cold gas to AGN, understanding the faint radio population, and studying magnetic fields in galaxies. After a proprietary period, survey data products will be publicly available through the Apertif Long Term Archive (ALTA, https://alta.astron.nl). I will review the progress of the surveys and present the first results from the Apertif surveys, including highlighting the currently available public data
    corecore