262 research outputs found

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

    Get PDF
    Autonomous critical systems, such as satellites and space rovers, must be able to detect the occurrence of faults in order to ensure correct operation. This task is carried out by Fault Detection and Identification (FDI) components, that are embedded in those systems and are in charge of detecting faults in an automated and timely manner by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal approach to the design of FDI components for discrete event systems, both in a synchronous and asynchronous setting. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical cases, and includes novel aspects such as maximality and trace-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic, and is proved to enjoy suitable properties. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. We propose an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

    Statistical Inference in Heterogeneous Block Model

    Full text link
    There exist various types of network block models such as the Stochastic Block Model (SBM), the Degree Corrected Block Model (DCBM), and the Popularity Adjusted Block Model (PABM). While this leads to a variety of choices, the block models do not have a nested structure. In addition, there is a substantial jump in the number of parameters from the DCBM to the PABM. The objective of this paper is formulation of a hierarchy of block model which does not rely on arbitrary identifiability conditions, treats the SBM, the DCBM and the PABM as its particular cases with specific parameter values and, in addition, allows a multitude of versions that are more complicated than DCBM but have fewer unknown parameters than the PABM. The latter allows one to carry out clustering and estimation without preliminary testing to see which block model is really true.Comment: 28 pages, 4 figure

    A Multi-scale colour and Keypoint Density-based Approach for Visual Saliency Detection.

    Get PDF
    In the first seconds of observation of an image, several visual attention processes are involved in the identification of the visual targets that pop-out from the scene to our eyes. Saliency is the quality that makes certain regions of an image stand out from the visual field and grab our attention. Saliency detection models, inspired by visual cortex mechanisms, employ both colour and luminance features. Furthermore, both locations of pixels and presence of objects influence the Visual Attention processes. In this paper, we propose a new saliency method based on the combination of the distribution of interest points in the image with multiscale analysis, a centre bias module and a machine learning approach. We use perceptually uniform colour spaces to study how colour impacts on the extraction of saliency. To investigate eye-movements and assess the performances of saliency methods over object-based images, we conduct experimental sessions on our dataset ETTO (Eye Tracking Through Objects). Experiments show our approach to be accurate in the detection of saliency concerning state-of-the-art methods and accessible eye-movement datasets. The performances over object-based images are excellent and consistent on generic pictures. Besides, our work reveals interesting findings on some relationships between saliency and perceptually uniform colour spaces

    Bayesian Joint Modeling of Multiple Brain Functional Networks

    Get PDF
    Investigating the similarity and changes in brain networks under different mental conditions has become increasingly important in neuroscience research. A standard separate estimation strategy fails to pool information across networks and hence has reduced estimation accuracy and power to detect between-network differences. Motivated by an fMRI Stroop task experiment that involves multiple related tasks, we develop an integrative Bayesian approach for jointly modeling multiple brain networks that provides a systematic inferential framework for network comparisons. The proposed approach explicitly models shared and differential patterns via flexible Dirichlet process-based priors on edge probabilities. Conditional on edges, the connection strengths are modeled via Bayesian spike-and-slab prior on the precision matrix off-diagonals. Numerical simulations illustrate that the proposed approach has increased power to detect true differential edges while providing adequate control on false positives and achieves greater network estimation accuracy compared to existing methods. The Stroop task data analysis reveals greater connectivity differences between task and fixation that are concentrated in brain regions previously identified as differentially activated in Stroop task, and more nuanced connectivity differences between exertion and relaxed task. In contrast, penalized modeling approaches involving computationally burdensome permutation tests reveal negligible network differences between conditions that seem biologically implausible. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement
    • …
    corecore