1,018,753 research outputs found

    Dilation kinetics of glassy, aromatic polyimides induced by carbon dioxide sorption

    Get PDF
    Over the past years, the equilibrium sorption of gases in polymers has been intensively studied. Mostly, glassy polymers were investigated because of their excellent selective mass transport properties. This work does not focus on the equilibrium sorption but on the kinetics to reach the equilibrium. We developed a new experimental method measuring the sorption-induced dilation kinetics of a polymer film. Carbon dioxide and glassy, aromatic polyimides were chosen as model systems. Low-pressure experiments demonstrate that the measured dilation kinetics represent the sorption kinetics. A significant delay between the sorption and dilation kinetics is based on the fact that dilation kinetics occurs simultaneously with the concentration increase in the center of the polymer film. High-pressure experiments reveal significant differences in dilation kinetics compared to low-pressure experiments. Generally, three regimes can be distinguished in the dilation kinetics: a first, fast volume increase followed by two much slower regimes of volume increase. The magnitude of fast and slow dilation kinetics strongly depends on the swelling history of the polymer sample. The results of the experiments are analyzed in the light of a model relating the fast dilation kinetics to a reversible Fickian dilation and the slower dilation kinetics to an irreversible, relaxational dilation

    Correlations between Growth Kinetics and Microstructure for Scales Formed by High-Temperature Oxidation of Pure Nickel. II. Growth Kinetics

    Get PDF
    The oxidation kinetics of high-purity nickel were studied between 500 and 1200°C, in pure oxygen at atmospheric pressure, for aûerage oxide-scale thicknesses of 1, 5, 10, and 30 μm. In the oûerall temperature range studied, a decrease in the parabolic rate constant kp with increasing scale thickness was observed. Depending on temperature and oxide-scale thickness, growth kinetics can be interpreted as a mixture of parabolic- and cubic-growth kinetics. Possible correlations between growth kinetics and microstructures of the oxide scales were inûestigated. From this set of experimental data, oxidation-kinetics models were tested. In particular, the effect of grain-boundary diffusion on NiO-growth kinetics was discussed. The correlations between growth kinetics and oxide microstructures appear to be more complex than usually reported

    Fundamental electrode kinetics

    Get PDF
    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics

    Kinetics of photoinduced matter transport driven by intensity and polarization in thin films containing azobenzene

    Get PDF
    We investigate the kinetics of photoinduced deformation phenomena in azobenzene-containing thin solid films. We show that a light intensity pattern and a light polarization pattern produce two distinct material transport processes whose direction and kinetics can be independently controlled. The kinetics of the intensity-driven deformation scales with the incoming light power while the kinetics of the polarization-driven mass transport scales with the amplitude of the electromagnetic field pattern. We conclude that these two processes are fully independent one from the other and originate from two different microscopic mechanisms

    Dynamical Self-assembly during Colloidal Droplet Evaporation Studied by in situ Small Angle X-ray Scattering

    Full text link
    The nucleation and growth kinetics of highly ordered nanocrystal superlattices during the evaporation of nanocrystal colloidal droplets was elucidated by in situ time resolved small-angle x-ray scattering. We demonstrated for the first time that evaporation kinetics can affect the dimensionality of the superlattices. The formation of two-dimensional nanocrystal superlattices at the liquid-air interface of the droplet has an exponential growth kinetics that originates from interface "crushing".Comment: 4 pages, 4 figure

    Geometry-controlled kinetics

    Full text link
    It has long been appreciated that transport properties can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target -- the first-passage time (FPT). Although essential to quantify the kinetics of reactions on all time scales, determining the FPT distribution was deemed so far intractable. Here, we calculate analytically this FPT distribution and show that transport processes as various as regular diffusion, anomalous diffusion, diffusion in disordered media and in fractals fall into the same universality classes. Beyond this theoretical aspect, this result changes the views on standard reaction kinetics. More precisely, we argue that geometry can become a key parameter so far ignored in this context, and introduce the concept of "geometry-controlled kinetics". These findings could help understand the crucial role of spatial organization of genes in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.Comment: Submitted versio

    A Method to Study Complex Enzyme Kinetics Involving Numerical Analysis of Enzymatic Schemes. The Mannitol Permease of Escherichia coli as an Example

    Get PDF
    An analysis of complex kinetic mechanisms is proposed that consists of two steps, (i) building of an kinetic scheme from experimental data other than steady-state kinetics and (ii) numerical simulation and analysis of the kinetics of the proposed scheme in relation to the experimental kinetics. Procedures are introduced to deal with large numbers of enzymatic states and rate constants, and numerical tools are defined to support the analysis of the scheme. The approach is explored by taking the mannitol permease of Escherichia coli as an example. This enzyme catalyzes both the transport of mannitol across the cytoplasmic membrane and the phosphorylation of mannitol. The challenge is to deduce the transport properties of this dimeric enzyme from the phosphorylation kinetics. It is concluded that (i) the steady-state kinetic behavior is largely consistent with the proposed catalytic cycle of the monomeric subunit, (ii) the kinetics provide no direct support but also do not disprove a coupled translocation of the binding sites on the two monomeric subunits. The approach reveals the need for further experimentation where the implementation of experimental results in the scheme conflict with the experimental kinetics and where specific experimental characteristics do not show up in the simulations of the proposed kinetic scheme.
    • …
    corecore