6,568 research outputs found

    Understanding the Evolutionary Relationships and Major Traits of \u3cem\u3eBacillus\u3c/em\u3e through Comparative Genomics

    Get PDF
    Background: The presence of Bacillus in very diverse environments reflects the versatile metabolic capabilities of a widely distributed genus. Traditional phylogenetic analysis based on limited gene sampling is not adequate for resolving the genus evolutionary relationships. By distinguishing between core and pan-genome, we determined the evolutionary and functional relationships of known Bacillus. Results: Our analysis is based upon twenty complete and draft Bacillus genomes, including a newly sequenced Bacillus isolate from an aquatic environment that we report for the first time here. Using a core genome, we were able to determine the phylogeny of known Bacilli, including aquatic strains whose position in the phylogenetic tree could not be unambiguously determined in the past. Using the pan-genome from the sequenced Bacillus, we identified functional differences, such as carbohydrate utilization and genes involved in signal transduction, which distinguished the taxonomic groups. We also assessed the genetic architecture of the defining traits of Bacillus, such as sporulation and competence, and showed that less than one third of the B. subtilis genes are conserved across other Bacilli. Most variation was shown to occur in genes that are needed to respond to environmental cues, suggesting that Bacilli have genetically specialized to allow for the occupation of diverse habitats and niches. Conclusions: The aquatic Bacilli are defined here for the first time as a group through the phylogenetic analysis of 814 genes that comprise the core genome. Our data distinguished between genomic components, especially core vs. pan-genome to provide insight into phylogeny and function that would otherwise be difficult to achieve. A phylogeny may mask the diversity of functions, which we tried to uncover in our approach. The diversity of sporulation and competence genes across the Bacilli was unexpected based on previous studies of the B. subtilis model alone. The challenge of uncovering the novelties and variations among genes of the non-subtilis groups still remains. This task will be best accomplished by directing efforts toward understanding phylogenetic groups with similar ecological niches

    BacillOndex: An Integrated Data Resource for Systems and Synthetic Biology

    Get PDF
    BacillOndex is an extension of the Ondex data integration system, providing a semantically annotated, integrated knowledge base for the model Gram-positive bacterium Bacillus subtilis. This application allows a user to mine a variety of B. subtilis data sources, and analyse the resulting integrated dataset, which contains data about genes, gene products and their interactions. The data can be analysed either manually, by browsing using Ondex, or computationally via a Web services interface. We describe the process of creating a BacillOndex instance, and describe the use of the system for the analysis of single nucleotide polymorphisms in B. subtilis Marburg. The Marburg strain is the progenitor of the widely-used laboratory strain B. subtilis 168. We identified 27 SNPs with predictable phenotypic effects, including genetic traits for known phenotypes. We conclude that BacillOndex is a valuable tool for the systems-level investigation of, and hypothesis generation about, this important biotechnology workhorse. Such understanding contributes to our ability to construct synthetic genetic circuits in this organism

    Metagenomics for Bacteriology

    Get PDF
    The study of bacteria, or bacteriology, has gone through transformative waves since its inception in the 1600s. It all started by the visualization of bacteria using light microscopy by Antonie van Leeuwenhoek, when he first described “animalcules.” Direct cellular observation then evolved into utilizing different wavelengths on novel platforms such as electron, fluorescence, and even near-infrared microscopy. Understanding the link between microbes and disease (pathogenicity) began with the ability to isolate and cultivate organisms through aseptic methodologies starting in the 1700s. These techniques became more prevalent in the following centuries with the work of famous scientists such as Louis Pasteur and Robert Koch, and many others since then. The relationship between bacteria and the host’s immune system was first inferred in the 1800s, and to date is continuing to unveil its mysteries. During the last century, researchers initiated the era of molecular genetics. The discovery of the first-generation sequencing technology, the Sanger method, and, later, the polymerase chain reaction technology propelled the molecular genetics field by exponentially expanding the knowledge of relationship between gene structure and function. The rise of commercially available next-generation sequencing methodologies, in the beginning of this century, is drastically allowing larger amount of information to be acquired, in a manner open to the democratization of the approach

    Reconstruction of an in silico metabolic model of _Arabidopsis thaliana_ through database integration

    Get PDF
    The number of genome-scale metabolic models has been rising quickly in recent years, and the scope of their utilization encompasses a broad range of applications from metabolic engineering to biological discovery. However the reconstruction of such models remains an arduous process requiring a high level of human intervention. Their utilization is further hampered by the absence of standardized data and annotation formats and the lack of recognized quality and validation standards.

Plants provide a particularly rich range of perspectives for applications of metabolic modeling. We here report the first effort to the reconstruction of a genome-scale model of the metabolic network of the plant _Arabidopsis thaliana_, including over 2300 reactions and compounds. Our reconstruction was performed using a semi-automatic methodology based on the integration of two public genome-wide databases, significantly accelerating the process. Database entries were compared and integrated with each other, allowing us to resolve discrepancies and enhance the quality of the reconstruction. This process lead to the construction of three models based on different quality and validation standards, providing users with the possibility to choose the standard that is most appropriate for a given application. First, a _core metabolic model_ containing only consistent data provides a high quality model that was shown to be stoichiometrically consistent. Second, an _intermediate metabolic model_ attempts to fill gaps and provides better continuity. Third, a _complete metabolic model_ contains the full set of known metabolic reactions and compounds in _Arabidopsis thaliana_.

We provide an annotated SBML file of our core model to enable the maximum level of compatibility with existing tools and databases. We eventually discuss a series of principles to raise awareness of the need to develop coordinated efforts and common standards for the reconstruction of genome-scale metabolic models, with the aim of enabling their widespread diffusion, frequent update, maximum compatibility and convenience of use by the wider research community and industry

    Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity.

    Get PDF
    BackgroundThe newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known.ResultsHere, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. By establishing the linkages between bacterial features and the groundwater environmental conditions, our results provide important insights into the functions and evolution of this CPR group.ConclusionsWe found that Patescibacteria has streamlined many functions while acquiring advantages such as avoiding phage invasion, to adapt to the groundwater environment. The unique features of small genome size, ultra-small cell size, and lacking CRISPR of this large lineage are bringing new understandings on life of Bacteria. Our results provide important insights into the mechanisms for adaptation of the superphylum in the groundwater environments, and demonstrate a case where less is more, and small is mighty

    Genome Wide Transcriptome Analysis of Dendritic Cells Identifies Genes with Altered Expression in Psoriasis

    Get PDF
    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGESeq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFNprimed iDCs
    corecore