36 research outputs found

    Knowledge-Based Design Patterns for Detailed Ship Structural Design

    Get PDF
    For detailed ship structural design standardization is a means to ensure a consistent build quality and to reduce design costs. With standards expressed electronically and using a knowledge-based approach, a rule-based system for the automatic design of standardized structural details is presented. For selected problems the corresponding rule formulations are developed; more advanced design tasks are solved by a bottom-up approach. As a result, the automatic, standards compliant design and validation is achieved, hence ensuring consistency as well as reducing the probability of design errors

    A Knowledge-Based Engineering System Framework for the Development of Electric Machines

    Get PDF
    The new concept industry 4.0 is a great opportunity to improve the competitiveness in a global market for small-medium size electric machinery companies. The demand for electric motors have increased in the last decade especially due to applications that try to make a full transition from fuel to electricity. These applications encounter the need for tailor-made motors that must meet demanding requirements. Therefore, it is mandatory small-medium companies adopt new technologies offering customized products fulfilling the customers’ requirements according to their investment capacity. Furthermore, simplify their development process as well as to reduce computational time to achieve a feasible design in shorter periods. In addition, find ways to retain know-how that is typically kept within each designer either to retrieve it or transfer it to new designers. To support the aforementioned issue, a knowledge-based engineering (KBE) system framework for the development of electric machines is devised. The framework is encapsulated in the so-called KBV2-model comprising the standardized macro-level framework for electrical machine and the knowledge base generation process. This thesis describes this model and the integration of KBE applications with current industrial technologies such as Model-Based Systems Engineering (MBSE), Product Lifecycle Management (PLM), multiphysics and analytical design tools. This architecture provides capability to manage and automate tasks in the development process of electric machines. The author of this work has opted to develop KBE applications following the minimum viable product principle. The KBE system framework herein presented is formalized through the experience and analysis of the development and implementation of the KBE applications. From which a guideline is provided following a sequential process in order to achieve a viable KBE system. To substantiate the process a KBE system is created that supports the development of electric motors for the elevator system industry

    Application of knowledge based engineering principles to intelligent automation systems

    Get PDF
    The automation of engineering processes provides many benefits over manual methods including significant cost and scheduling reduction as well as intangible advantages of greater consistency based on agreed methods, standardisation and simplification of complex problems and knowledge retention. Knowledge Based Engineering (KBE) and Design Automation (DA) are two sets of methodologies and technologies for automating engineering processes through software. KBE refers to the structured capture, modelling and deployment of engineering knowledge in high level intelligent systems that provide a wide scope of automation capability. KBE system development is supported by numerous mature methodologies that cover all aspects of the development process including: problem identification and feasibility studies, knowledge capture and modelling, and system design, development and deployment. Conversely, DA is the process of developing automated solutions to specific, well defined engineering tasks. The DA approach is characterised by agile software development methods, producing lower level systems that are intentionally limited in scope. DA-type solutions are more commonly adopted by industry than KBE applications due to shorter development schedules, lower cost and less complex development processes. However, DA application development is not as well supported by theoretical frameworks, and consequently, development processes can be unstructured and best practices not observed. The research presented in this thesis is divided into two key areas. Firstly, a methodology for automating engineering processes is proposed, with the aim of improving the accessibility of mature KBE methods to a broader industrial base. This methodology supports development of automation applications ranging in complexity from high level KBE systems to lower level DA applications. A complexity editing mechanism is introduced that relates detailed processes of KBE methodologies to a set of characteristics that can be exhibited by automated solutions. Depending on individual application requirements, complexity of automated solutions can lowered by deselecting one or more of these characteristics, omitting associated high-level processes from the development methodology. At the lowest level of complexity, the methodology provides a structured process for producing DA applications that incorporates principles of mature KBE methodologies. The second part of this research uses the proposed automation methodology to develop a system to automate the layout design of aircraft electrical harnesses. Increasing complexity of aircraft electrical systems has an associated increase in the number and size of electrical harnesses required to connect subsystems throughout the airframe. Current practices for layout design are highly manual, with many governing rules and best practices. The automation of this process will provide a significant reduction in low level, repetitive, manual work. The resulting automated routing tool implements path-finding techniques from computer game artificial intelligence and microprocessor design domains, together with new methods for incorporating the numerous design rules governing harness placement. The system was tested with a complex industrial test case, and was found to provide harness solutions in a fraction of the time and with comparable quality as equivalent manual design processes. The repeatability of the automated process can also minimise scheduling impacts caused by late design changes

    A Novel Virtual Product Modelling Framework for Design Automation in a Knowledge-Based Engineering Environment

    Get PDF
    Computer Aided Design (CAD) has been widely used for product modelling in the industry, where multiple issues arise, such as lack of product data representation and capturing and reusing the existing design knowledge in the modelling process. Existing CAD systems only provide geometric data within the CAD models and require users to have knowledge of the product to judge the correctness of the modelling process. Knowledge-Based Engineering (KBE) has been introduced to assist product design with the capabilities of knowledge capturing and reusing. However, there is always a “black box” problem in understanding the existing KBE applications, and the substantiation steps for the implementation of KBE frameworks are still limited. To address this, the author proposed and implemented a Virtual Product Modelling (VPM) framework that helps capture and reuse existing product information to enhance the modelling process for design automation. This framework was built as a knowledge-based product modelling environment using a gaming engine. It was further evaluated through three use cases, where the proposed framework was applied to simple parts with primitive geometric features, a hex bolt, and a wheel assembly. The results of the use case evaluation indicate that this framework satisfies all the identified measurement parameters and achieves the aim of the research. This research enhances the product modelling process with the capabilities of generative representation, knowledge capturing and reusing. It provides design engineers with the knowledge reasoning capability when they are making changes to the product model and, therefore, saves time and prevents engineers from making mistakes. This research also presents a KBE implementation framework with detailed substantiation steps, where the knowledge is structured and reusable within the product model. Further, the findings of this research have shown the potential of the developed VPM framework in aspects such as standard development in product modelling, extending to non-engineers and integration with VR/AR visualisation techniques

    Capture and Maintenance of Constraints in Engineering Design

    Get PDF
    The thesis investigates two domains, initially the kite domain and then part of a more demanding Rolls-Royce domain (jet engine design). Four main types of refinement rules that use the associated application conditions and domain ontology to support the maintenance of constraints are proposed. The refinement rules have been implemented in ConEditor and the extended system is known as ConEditor+. With the help of ConEditor+, the thesis demonstrates that an explicit representation of application conditions together with the corresponding constraints and the domain ontology can be used to detect inconsistencies, redundancy, subsumption and fusion, reduce the number of spurious inconsistencies and prevent the identification of inappropriate refinements of redundancy, subsumption and fusion between pairs of constraints.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Integrated Realization of Materials, Products and Associated Manufacturing Processes

    Get PDF
    Problem: A materials design revolution is underway in the recent past where the focus is to design (not select) the material microstructure and processing paths to achieve multiple property or performance requirements that are often in conflict. The advancements in computer simulations have resulted in the speeding up of the process of discovering new materials and has paved way for rapid assessment of process-structure-property-performance relationships of materials, products, and processes. This has led to the simulation-based design of material microstructure (microstructure-mediated design) to satisfy multiple property or performance goals of the product/process/system thereby replacing the classical material design and selection approaches. The foundational premise for this dissertation is that systems-based materials design techniques offer the potential for tailoring materials, their processing paths and the end products that employ these materials in an integrated fashion for challenging applications to satisfy conflicting product and process level property and performance requirements. The primary goal in this dissertation is to establish some of the scientific foundations and tools that are needed for the integrated realization of materials, products and manufacturing processes using simulation models that are typically incomplete, inaccurate and not of equal fidelity by managing the uncertainty associated. Accordingly, the interest in this dissertation lies in establishing a systems-based design architecture that includes system-level synthesis methods and tools that are required for the integrated design of complex materials, products and associated manufacturing processes starting from the end requirements. Hence the primary research question: What are the theoretical, mathematical and computational foundations needed for establishing a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system? Major challenges to be addressed here are: a) integration of models (material, process and product) to establish processing-structure-property-performance relationships, b) goal-oriented inverse design of material microstructures and processing paths to meet multiple conflicting performance/property requirements, c) robust concept exploration by managing uncertainty across process chains and d) systematic, domain-independent, modular, reconfigurable, reusable, computer interpretable, archivable, and multi-objective decision support in the early stages of design to different users. Approach: In order to address these challenges, the primary hypothesis in this dissertation is to establish the theoretical, mathematical and computational foundations for: 1) forward material, product and process workflows through systematic identification and integration of models to define the processing-structure-property-performance relationships; 2) a concept exploration framework supporting systematic formulation of design problems facilitating robust design exploration by bringing together robust design principles and multi-objective decision making protocols; 3) a generic, goal-oriented, inverse decision-based design method that uses 1) and 2) to facilitate the systems-based inverse design of material microstructures and processing paths to meet multiple product level performance/property requirements, thereby generating the problem-specific inverse decision workflow; and 4) integrating the workflows with a knowledge-based platform anchored in modeling decision-related knowledge facilitating capture, execution and reuse of the knowledge associated with 1), 2) and 3). This establishes a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system. Validation: The systems-based design architecture for the integrated realization of materials, products and associated manufacturing processes is validated using the validation-square approach that consists of theoretical and empirical validation. Empirical validation of the design architecture is carried out using an industry driven problem namely the ‘Integrated Design of Steel (Material), Manufacturing Processes (Rolling and Cooling) and Hot Rolled Rods (Product) for Automotive Gears’. Specific sub-problems are formulated within this problem domain to address various research questions identified in this dissertation. Contributions: The contributions from the dissertation are categorized into new knowledge in four research domains: a) systematic model integration (vertical and horizontal) for integrated material and product workflows, b) goal-oriented, inverse decision support, c) robust concept exploration of process chains with multiple conflicting goals and d) knowledge-based decision support for rapid and robust design exploration in simulation-based integrated material, product and process design. The creation of new knowledge in this dissertation is associated with the development of a systems-based design architecture involving systematic function-based approach of formulating forward material workflows, a concept exploration framework for systematic design exploration, an inverse decision-based design method, and robust design metrics, all integrated with a knowledge-based platform for decision support. The theoretical, mathematical and computational foundations for the design architecture are proposed in this dissertation to facilitate rapid and robust exploration of the design and solution spaces to identify material microstructures and processing paths that satisfy conflicting property and performance for complex materials, products and processes by managing uncertainty

    Semantic Networks for Hybrid Processes.

    Full text link
    Simulation models are often used in parallel with a physical system to facilitate control, diagnosis and monitoring. Model based methods for control, diagnosis and monitoring form the basis for the popular sobriquets `intelligent', `smart' or `cyber-physical'. We refer to a configuration where a model and a physical system are run in parallel as a emph{hybrid process}. Discrepancies between the model and the process may be caused by a fault in the process or an error in the model. In this work we focus on correcting modeling errors and provide methods to correct or update the model when a discrepancy is observed between a model and process operating in parallel. We then show that some of the methods developed for model adaptation and diagnosis can be used for control systems design. There are five main contributions. The first contribution is an analysis of the practical considerations and limitations of a networked implementation of a hybrid process. The analysis considers both the delay and jitter in a packet switching network as well as limits on the accuracy of clocks used to synchronize the model and process. The second contribution is a semantic representation of hybrid processes which enables improvements to the accuracy and scope of algorithms used to update the model. We demonstrate how model uncertainty can be balanced against signal uncertainty and how the structure of interconnections between model components can be automatically reconfigured if needed. The third contribution is a diagnostic approach to isolate model components responsible for a discrepancy between model and process, for a structure preserving realization of a system of ODEs. The fourth contribution is an extension of the diagnostic strategy to include larger graphs with cycles, model uncertainty and measurement noise. The method uses graph theoretic tools to simplify the graph and make the problem more tractable and robust to noise. The fifth contribution is a simulation of a distributed control system to illustrate our contributions. Using a coordinated network of electric vehicle charging stations as an example, a consensus based decentralized charging policy is implemented using semantic modeling and declarative descriptions of the interconnection network.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99903/1/danand_1.pd

    A metamodel to annotate knowledge based engineering codes as enterprise knowledge resources

    Get PDF
    The encoding of Knowledge Based Engineering (KBE) software applications is becoming a prominent tool for the automation of knowledge intensive tasks carried out using Computer Aided Design (CAD) technology. However, limitations exist on the ability to manage the engineering knowledge models embedded in these executable KBE applications. This research proposes a metamodel to annotate encoded KBE applications. Resulting from the annotation, XKMs become explicit knowledge resources whose content can be better accessed and managed. The attachment of metadata to data sets in enterprise repositories is a necessary step to identify and index them so they can be queried, browsed and changed. The sophistication of metadata models for these data “items” ranges from the simple indexing using numbers to more sophisticated representations describing their context information (i.e. author, creation date, etc.), their internal structure and their content. Current engineering data repositories like Product Data Management and Product Lifecycle Management systems offer predefined metamodels to annotate a range of engineering data items including CAD files or special types of documents. At the moment, there is no metadata model specifically designed to annotate KBE codes. In this situation, an undifferentiated metadata model needs to be used for XKMs. However, in this case the only information retained by the system about them would be context metadata. Once an instance of the metadata is attached to an XKM, it can be used as its identifier within an enterprise data repository. The proposed metamodel contains abstract entities to annotate XKMs. The resulting descriptive model for an XKM pays attention to its internal structure and its operation at different levels of granularity. The particular design of the proposed metamodel positions it at a level of abstraction between non executable domain knowledge models and executable KBE applications. This design choice is made to support the use of the metadata not only as an informative model but also as an executable one. The achievement of this target is becoming possible through the emergence of semantic modelling standards that allow the description of data models independently from the language of implementation. Using this approach, the generation of code and metadata is made automatically using mapping rules resulting from the semantic agreement between models and specific syntax rules. The immediate application of the developed metamodel is to annotate XKMs within PLM systems. The approach shall contribute not only to systematically store instances of XKMs but also to manage the lifecycle of the engineering knowledge encoded within them. The proposed representation provides a more comprehensive approach for non KBE language experts to understand the code. On this basis, the change on the metamodels can be automatically traced back to the code and vice-versa. During the research, evidence has been gathered from the community of KBE technology users and vendors on the need to support this research effort. In the long term, the research contributes to the use of PLM systems as a platform for engineering knowledge management.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations
    corecore