99 research outputs found

    Parameterizing the permanent: Hardness for fixed excluded minors

    Get PDF

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen für Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthält und sonst nichts. Für einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthält. Sei T eine Transversale einer Färbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollständigen, in T gewurzelten Minors zu gewährleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhängende Teilmengen der Knotenmenge einen hoch zusammenhängenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von Hamiltonizität in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed

    Decomposition, approximation, and coloring of odd-minor-free graphs

    Get PDF
    We prove two structural decomposition theorems about graphs excluding a fixed odd minor H, and show how these theorems can be used to obtain approximation algorithms for several algorithmic problems in such graphs. Our decomposition results provide new structural insights into odd-H-minor-free graphs, on the one hand generalizing the central structural result from Graph Minor Theory, and on the other hand providing an algorithmic decomposition into two bounded-treewidth graphs, generalizing a similar result for minors. As one example of how these structural results conquer difficult problems, we obtain a polynomial-time 2-approximation for vertex coloring in odd-H-minor-free graphs, improving on the previous O(jV (H)j)-approximation for such graphs and generalizing the previous 2-approximation for H-minor-free graphs. The class of odd-H-minor-free graphs is a vast generalization of the well-studied H-minor-free graph families and includes, for example, all bipartite graphs plus a bounded number of apices. Odd-H-minor-free graphs are particularly interesting from a structural graph theory perspective because they break away from the sparsity of H- minor-free graphs, permitting a quadratic number of edges

    The reducibility of optimal 1-planar graphs with respect to the lexicographic product

    Full text link
    A graph is called 1-planar if it can be drawn on the plane (or on the sphere) such that each edge is crossed at most once. A 1-planar graph GG is called optimal if it satisfies ∣E(G)∣=4∣V(G)∣−8|E(G)| = 4|V(G)|-8. If GG and HH are graphs, then the lexicographic product G∘HG\circ H has vertex set the Cartesian product V(G)×V(H)V(G)\times V(H) and edge set {(g1,h1)(g2,h2):g1g2∈E(G),  or  g1=g2  and  h1h2∈E(H)}\{(g_1,h_1) (g_2,h_2): g_1 g_2 \in E(G),\,\, \text{or}\,\, g_1=g_2 \,\, \text{and}\,\, h_1 h_2 \in E(H)\}. A graph is called reducible if it can be expressed as the lexicographic product of two smaller non-trivial graphs. In this paper, we prove that an optimal 1-planar graph GG is reducible if and only if GG is isomorphic to the complete multipartite graph K2,2,2,2K_{2,2,2,2}. As a corollary, we prove that every reducible 1-planar graph with nn vertices has at most 4n−94n-9 edges for n=6n=6 or n≥9n\ge 9. We also prove that this bound is tight for infinitely many values of nn. Additionally, we give two necessary conditions for a graph G∘2K1G\circ 2K_1 to be 1-planar.Comment: 23 pages, 14 fugure
    • …
    corecore