7,205 research outputs found

    Spontaneous Symmetry Breaking, Conformal Anomaly and Incompressible Fluid Turbulence

    Full text link
    We propose an effective conformal field theory (CFT) description of steady state incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We derive a KPZ-type equation for the anomalous scaling of the longitudinal velocity structure functions and relate the intermittency parameter to the boundary Euler (A-type) conformal anomaly coefficient. The proposed theory consists of a mean field CFT that exhibits Kolmogorov linear scaling (K41 theory) coupled to a dilaton. The dilaton is a Nambu-Goldstone gapless mode that arises from a spontaneous breaking due to the energy flux of the separate scale and time symmetries of the inviscid Navier-Stokes equations to a K41 scaling with a dynamical exponent z=23z=\frac{2}{3}. The dilaton acts as a random measure that dresses the K41 theory and introduces intermittency. We discuss the two, three and large number of space dimensions cases and how entanglement entropy can be used to characterize the intermittency strength.Comment: 27 pages, revtex; added discussions, added formulas, added referenc

    Chaotic Cascades with Kolmogorov 1941 Scaling

    Full text link
    We define a (chaotic) deterministic variant of random multiplicative cascade models of turbulence. It preserves the hierarchical tree structure, thanks to the addition of infinitesimal noise. The zero-noise limit can be handled by Perron-Frobenius theory, just as the zero-diffusivity limit for the fast dynamo problem. Random multiplicative models do not possess Kolmogorov 1941 (K41) scaling because of a large-deviations effect. Our numerical studies indicate that deterministic multiplicative models can be chaotic and still have exact K41 scaling. A mechanism is suggested for avoiding large deviations, which is present in maps with a neutrally unstable fixed point.Comment: 14 pages, plain LaTex, 6 figures available upon request as hard copy (no local report #

    Analogy between turbulence and quantum gravity: beyond Kolmogorov's 1941 theory

    Full text link
    Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum-space time with the recent Horava-Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on Extended Self-Similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.Comment: Sliglty modified version of the article about to appear in IJMP

    Intermittency in the large N-limit of a spherical shell model for turbulence

    Full text link
    A spherical shell model for turbulence, obtained by coupling NN replicas of the Gledzer, Okhitani and Yamada shell model, is considered. Conservation of energy and of an helicity-like invariant is imposed in the inviscid limit. In the N→∞N \to \infty limit this model is analytically soluble and is remarkably similar to the random coupling model version of shell dynamics. We have studied numerically the convergence of the scaling exponents toward the value predicted by Kolmogorov theory (K41). We have found that the rate of convergence to the K41 solution is linear in 1/N. The restoring of Kolmogorov law has been related to the behaviour of the probability distribution functions of the instantaneous scaling exponent.Comment: 10 pages, Latex, 3 Postscript figures, to be published on Europhys. Let

    Totela K41

    Get PDF
    Peer reviewe

    Quasi-Gaussian Statistics of Hydrodynamic Turbulence in 3/4+\epsilon dimensions

    Full text link
    The statistics of 2-dimensional turbulence exhibit a riddle: the scaling exponents in the regime of inverse energy cascade agree with the K41 theory of turbulence far from equilibrium, but the probability distribution functions are close to Gaussian like in equilibrium. The skewness \C S \equiv S_3(R)/S^{3/2}_2(R) was measured as \C S_{\text{exp}}\approx 0.03. This contradiction is lifted by understanding that 2-dimensional turbulence is not far from a situation with equi-partition of enstrophy, which exist as true thermodynamic equilibrium with K41 exponents in space dimension of d=4/3d=4/3. We evaluate theoretically the skewness \C S(d) in dimensions 4/3≤d≤2{4/3}\le d\le 2, show that \C S(d)=0 at d=4/3d=4/3, and that it remains as small as \C S_{\text{exp}} in 2-dimensions.Comment: PRL, submitted, REVTeX 4, 4 page

    Statistical anisotropy of magnetohydrodynamic turbulence

    Full text link
    Direct numerical simulations of decaying and forced magnetohydrodynamic (MHD) turbulence without and with mean magnetic field are analyzed by higher-order two-point statistics. The turbulence exhibits statistical anisotropy with respect to the direction of the local magnetic field even in the case of global isotropy. A mean magnetic field reduces the parallel-field dynamics while in the perpendicular direction a gradual transition towards two-dimensional MHD turbulence is observed with k−3/2k^{-3/2} inertial-range scaling of the perpendicular energy spectrum. An intermittency model based on the Log-Poisson approach, ζp=p/g2+1−(1/g)p/g\zeta_p=p/g^2 +1 -(1/g)^{p/g}, is able to describe the observed structure function scalings.Comment: 4 pages, 3 figures. To appear in Phys.Rev.
    • …
    corecore