13,941,754 research outputs found

    Super congruences and Euler numbers

    Full text link
    Let p>3p>3 be a prime. We prove that k=0p1(2kk)/2k=(1)(p1)/2p2Ep3(modp3),\sum_{k=0}^{p-1}\binom{2k}{k}/2^k=(-1)^{(p-1)/2}-p^2E_{p-3} (mod p^3), k=1(p1)/2(2kk)/k=(1)(p+1)/28/3pEp3(modp2),\sum_{k=1}^{(p-1)/2}\binom{2k}{k}/k=(-1)^{(p+1)/2}8/3*pE_{p-3} (mod p^2), k=0(p1)/2(2kk)2/16k=(1)(p1)/2+p2Ep3(modp3)\sum_{k=0}^{(p-1)/2}\binom{2k}{k}^2/16^k=(-1)^{(p-1)/2}+p^2E_{p-3} (mod p^3), where E_0,E_1,E_2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2\pi^2, π2\pi^{-2} and the constant K:=k>0(k/3)/k2K:=\sum_{k>0}(k/3)/k^2 (with (-) the Jacobi symbol), two of which are k=1(10k3)8k/(k3(2kk)2(3kk))=π2/2\sum_{k=1}^\infty(10k-3)8^k/(k^3\binom{2k}{k}^2\binom{3k}{k})=\pi^2/2 and \sum_{k>0}(15k-4)(-27)^{k-1}/(k^3\binom{2k}{k}^2\binom{3k}k)=K.$

    Cusps in K --> 3 pi decays

    Full text link
    The pion mass difference generates a pronounced cusp in K --> 3 pi decays. As has recently been pointed out by Cabibbo and Isidori, an accurate measurement of the cusp may allow one to pin down the S-wave pi pi scattering lengths to high precision. Here, we present and illustrate an effective field theory framework that allows one to determine the structure of this cusp in a straightforward manner. The strictures imposed by analyticity and unitarity are respected automatically.Comment: 14 pages, 3 figures, uses Elsevier styl

    On the nature of the K*2(1430), K*3(1780), K*4(2045), K*5(2380) and K*6 as K*--multi-rho states

    Get PDF
    We show that the K2(1430)K^*_2(1430), K3(1780)K^*_3(1780), K4(2045)K^*_4(2045), K5(2380)K^*_5(2380) and a not yet discovered K6K_6^* resonance are basically molecules made of an increasing number of ρ(770)\rho(770) and one K(892)K^*(892) mesons. The idea relies on the fact that the vector-vector interaction in s-wave with spins aligned is very strong both for ρρ\rho\rho and KρK^*\rho. We extend a recent work, where several resonances showed up as multi-ρ(770)\rho(770) molecules, to the strange sector including the K(892)K^*(892) into the system. The resonant structures show up in the multi-body scattering amplitudes, which are evaluated in terms of the unitary two-body vector-vector scattering amplitudes by using the fixed center approximation to the Faddeev equations

    Radiative corrections in K --> 3 pi decays

    Full text link
    We investigate radiative corrections to K --> 3 pi decays. In particular, we extend the non-relativistic framework developed recently to include real and virtual photons and show that, in a well-defined power counting scheme, the results reproduce corrections obtained in the relativistic calculation. Real photons are included exactly, beyond the soft-photon approximation, and we compare the result with the latter. The singularities generated by pionium near threshold are investigated, and a region is identified where standard perturbation theory in the fine structure constant alpha may be applied. We expect that the formulae provided allow one to extract S-wave pi pi scattering lengths from the cusp effect in these decays with high precision.Comment: 57 pages, 17 figure
    corecore