118,043 research outputs found

    High-Throughput Random Access via Codes on Graphs

    Get PDF
    Recently, contention resolution diversity slotted ALOHA (CRDSA) has been introduced as a simple but effective improvement to slotted ALOHA. It relies on MAC burst repetitions and on interference cancellation to increase the normalized throughput of a classic slotted ALOHA access scheme. CRDSA allows achieving a larger throughput than slotted ALOHA, at the price of an increased average transmitted power. A way to trade-off the increment of the average transmitted power and the improvement of the throughput is presented in this paper. Specifically, it is proposed to divide each MAC burst in k sub-bursts, and to encode them via a (n,k) erasure correcting code. The n encoded sub-bursts are transmitted over the MAC channel, according to specific time/frequency-hopping patterns. Whenever n-e>=k sub-bursts (of the same burst) are received without collisions, erasure decoding allows recovering the remaining e sub-bursts (which were lost due to collisions). An interference cancellation process can then take place, removing in e slots the interference caused by the e recovered sub-bursts, possibly allowing the correct decoding of sub-bursts related to other bursts. The process is thus iterated as for the CRDSA case.Comment: Presented at the Future Network and MobileSummit 2010 Conference, Florence (Italy), June 201
    • …
    corecore