202 research outputs found

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    A Bio-inspired Load Balancing Technique for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of multiple distributed nodes each with limited resources. With their strict resource constraints and application-specific characteristics, WSNs contain many challenging trade-offs. This thesis is concerned with the load balancing of Wireless Sensor Networks (WSNs). We present an approach, inspired by bees’ pheromone propagation mechanism, that allows individual nodes to decide on the execution process locally to solve the trade-off between service availability and energy consumption. We explore the performance consequences of the pheromone-based load balancing approach using a system-level simulator. The effectiveness of the algorithm is evaluated on case studies based on sound sensors with different scenarios of existing approaches on variety of different network topologies. The performance of our approach is dependant on the values chosen for its parameters. As such, we utilise the Simulated Annealing to discover optimal parameter configurations for pheromone-based load balancing technique for any given network schema. Once the parameter values are optimised for the given network topology automatically, we inspect improving the pheromone-based load balancing approach using robotic agents. As cyber-physical systems benefit from the heterogeneity of the hardware components, we introduce the use of pheromone signalling-based robotic guidance that integrates the robotic agents to the existing load balancing approach by guiding the robots into the uncovered area of the sensor field. As such, we maximise the service availability using the robotic agents as well as the sensor nodes

    The suitability of the dendritic cell algorithm for robotic security applications

    Get PDF
    The implementation and running of physical security systems is costly and potentially hazardous for those employed to patrol areas of interest. From a technial perspective, the physical security problem can be seen as minimising the probability that intruders and other anomalous events will occur unobserved. A robotic solution is proposed using an artificial immune system, traditionally applied to software security, to identify threats and hazards: the dendritic cell algorithm. It is demonstrated that the migration from the software world to the hardware world is achievable for this algorithm and key properties of the resulting system are explored empirically and theoretically. It is found that the algorithm has a hitherto unknown frequency-dependent component, making it ideal for filtering out sensor noise. Weaknesses of the algorithm are also discovered, by mathematically phrasing the signal processing phase as a collection of linear classifiers. It is concluded that traditional machine learning approaches are likely to outperform the implemented system in its current form. However, it is also observed that the algorithm’s inherent filtering characteristics make modification, rather than rejection, the most beneficial course of action. Hybridising the dendritic cell algorithm with more traditional machine learning techniques, through the introduction of a training phase and using a non-linear classification phase is suggested as a possible future direction

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    The suitability of the dendritic cell algorithm for robotic security applications

    Get PDF
    The implementation and running of physical security systems is costly and potentially hazardous for those employed to patrol areas of interest. From a technial perspective, the physical security problem can be seen as minimising the probability that intruders and other anomalous events will occur unobserved. A robotic solution is proposed using an artificial immune system, traditionally applied to software security, to identify threats and hazards: the dendritic cell algorithm. It is demonstrated that the migration from the software world to the hardware world is achievable for this algorithm and key properties of the resulting system are explored empirically and theoretically. It is found that the algorithm has a hitherto unknown frequency-dependent component, making it ideal for filtering out sensor noise. Weaknesses of the algorithm are also discovered, by mathematically phrasing the signal processing phase as a collection of linear classifiers. It is concluded that traditional machine learning approaches are likely to outperform the implemented system in its current form. However, it is also observed that the algorithm’s inherent filtering characteristics make modification, rather than rejection, the most beneficial course of action. Hybridising the dendritic cell algorithm with more traditional machine learning techniques, through the introduction of a training phase and using a non-linear classification phase is suggested as a possible future direction

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    • …
    corecore