126 research outputs found

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Featured Anomaly Detection Methods and Applications

    Get PDF
    Anomaly detection is a fundamental research topic that has been widely investigated. From critical industrial systems, e.g., network intrusion detection systems, to people’s daily activities, e.g., mobile fraud detection, anomaly detection has become the very first vital resort to protect and secure public and personal properties. Although anomaly detection methods have been under consistent development over the years, the explosive growth of data volume and the continued dramatic variation of data patterns pose great challenges on the anomaly detection systems and are fuelling the great demand of introducing more intelligent anomaly detection methods with distinct characteristics to cope with various needs. To this end, this thesis starts with presenting a thorough review of existing anomaly detection strategies and methods. The advantageous and disadvantageous of the strategies and methods are elaborated. Afterward, four distinctive anomaly detection methods, especially for time series, are proposed in this work aiming at resolving specific needs of anomaly detection under different scenarios, e.g., enhanced accuracy, interpretable results, and self-evolving models. Experiments are presented and analysed to offer a better understanding of the performance of the methods and their distinct features. To be more specific, the abstracts of the key contents in this thesis are listed as follows: 1) Support Vector Data Description (SVDD) is investigated as a primary method to fulfill accurate anomaly detection. The applicability of SVDD over noisy time series datasets is carefully examined and it is demonstrated that relaxing the decision boundary of SVDD always results in better accuracy in network time series anomaly detection. Theoretical analysis of the parameter utilised in the model is also presented to ensure the validity of the relaxation of the decision boundary. 2) To support a clear explanation of the detected time series anomalies, i.e., anomaly interpretation, the periodic pattern of time series data is considered as the contextual information to be integrated into SVDD for anomaly detection. The formulation of SVDD with contextual information maintains multiple discriminants which help in distinguishing the root causes of the anomalies. 3) In an attempt to further analyse a dataset for anomaly detection and interpretation, Convex Hull Data Description (CHDD) is developed for realising one-class classification together with data clustering. CHDD approximates the convex hull of a given dataset with the extreme points which constitute a dictionary of data representatives. According to the dictionary, CHDD is capable of representing and clustering all the normal data instances so that anomaly detection is realised with certain interpretation. 4) Besides better anomaly detection accuracy and interpretability, better solutions for anomaly detection over streaming data with evolving patterns are also researched. Under the framework of Reinforcement Learning (RL), a time series anomaly detector that is consistently trained to cope with the evolving patterns is designed. Due to the fact that the anomaly detector is trained with labeled time series, it avoids the cumbersome work of threshold setting and the uncertain definitions of anomalies in time series anomaly detection tasks

    Advanced deep learning approaches for biosingnals applications

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.A wide gap exists between clinical application results and those from laboratory observations concerning hand rehabilitation devices. In most instances, laboratory observations show superior outcomes the real-time applications demonstrate poor consequences. The robust nature of the electromyography signal and limited laboratory applications are the principal reasons for the gap. This thesis aims to introduce and develop a deep learning model that is capable of learning features from biosignals. The deep learning model is expected to tame the variable nature of the electromyography signal which will lead to the best available outcomes. Furthermore, the suggested deep learning scheme will be trained to be skilled in learning the best features that match the biosignal application regardless of the number of classes. Moreover, traditional feature extraction is time consuming and extremely reliant on the user’s experience and the application. The objective of this research is accomplished via the following four implemented models. 1. Developing a deep learning model via implementing a two-stage autoencoder along with applying different signal representations like spectrogram, wavelet and wavelet packet to tame variations of the electromyography signal. Support vector machine, extreme learning machine with two activation functions (sigmoid and radial basis function) and softmax layer were used for classifications. Moreover, the classifier fusion layer achieved testing accuracy of more than 92% and training attained more than 98%. The same dataset was implemented for superimposed signal representations for two stages autoencoder and softmax layer, support vector machine, k-nearest neighbor and discriminant analysis for classification besides the classifier fusion which led to testing accuracy of more than 90%. 2. Presenting principal component analysis and independent component analysis for feature learning purposes after applying different signal representations algorithms such as spectrogram, wavelet and wavelet packet. Discriminant analysis, extreme learning machine and support vector machine were used for classification. Furthermore, the two proposed models showed acceptable accuracy along with shorter simulation time. The testing accuracy achieved more than 90% by implementing a classifier fusion layer. Manhattan index was estimated for all features and only the top 50 Manhattan index features were included to decrease the simulation time while attaining acceptable accuracy values. 3. Introducing a self-organising map for deep learning whereby the biosignal was represented by spectrograms, wavelet and wavelet packet. The presented biosignal was introduced to a layer of self- organising map then the suggested system performance was evaluated by extreme learning machine, self-adaptive evolutionally extreme learning machine, discriminant analysis and support vector machine for classification. Adding a classifier fusion layer increased the testing accuracy to 96.60% for ten-finger movements and 99.73% for training. The proposed system showed superior behavior regarding accuracy and simulation time. 4. Presenting a deep learning model where 1) the data was augmented after representing the biosignal by a spectrogram, 2) the augmented signal was represented by a tensor, and finally 3) The signal was introduced to the two-stage autoencoder. The same dataset was used with traditional pattern recognition for comparison purposes. Classifier fusion layer was executed in deep learning scheme whereby the ten-finger movements achieved 90.25% and 87.11% attained by pattern recognition. Besides, the six finger movement dataset was acquired from amputee participants and accomplished 91.85% for deep learning and reached 89.64% for traditional pattern recognition. Furthermore, different datasets for different applications were tested using the recommended deep learning model. Eventually, feeding the deep learning model with various datasets for different applications afforded the model with higher fidelity, combined with real outcomes and generalization

    Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis

    Get PDF
    Nonnegative Matrix Factorization (NMF) has found a wide variety of applications in machine learning and data mining. NMF seeks to approximate a nonnegative data matrix by a product of several low-rank factorizing matrices, some of which are constrained to be nonnegative. Such additive nature often results in parts-based representation of the data, which is a desired property especially for cluster analysis.  This thesis presents advances in NMF with application in cluster analysis. It reviews a class of higher-order NMF methods called Quadratic Nonnegative Matrix Factorization (QNMF). QNMF differs from most existing NMF methods in that some of its factorizing matrices occur twice in the approximation. The thesis also reviews a structural matrix decomposition method based on Data-Cluster-Data (DCD) random walk. DCD goes beyond matrix factorization and has a solid probabilistic interpretation by forming the approximation with cluster assigning probabilities only. Besides, the Kullback-Leibler divergence adopted by DCD is advantageous in handling sparse similarities for cluster analysis.  Multiplicative update algorithms have been commonly used for optimizing NMF objectives, since they naturally maintain the nonnegativity constraint of the factorizing matrix and require no user-specified parameters. In this work, an adaptive multiplicative update algorithm is proposed to increase the convergence speed of QNMF objectives.  Initialization conditions play a key role in cluster analysis. In this thesis, a comprehensive initialization strategy is proposed to improve the clustering performance by combining a set of base clustering methods. The proposed method can better accommodate clustering methods that need a careful initialization such as the DCD.  The proposed methods have been tested on various real-world datasets, such as text documents, face images, protein, etc. In particular, the proposed approach has been applied to the cluster analysis of emotional data

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    Median topographic maps for biomedical data sets

    Full text link
    Median clustering extends popular neural data analysis methods such as the self-organizing map or neural gas to general data structures given by a dissimilarity matrix only. This offers flexible and robust global data inspection methods which are particularly suited for a variety of data as occurs in biomedical domains. In this chapter, we give an overview about median clustering and its properties and extensions, with a particular focus on efficient implementations adapted to large scale data analysis

    An overview of clustering methods with guidelines for application in mental health research

    Get PDF
    Cluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are subsequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general guidance on clustering workflow and reporting requirements. To facilitate the implementation of different algorithms, we provide information on R functions and librarie

    A framework for ancient and machine-printed manuscripts categorization

    Get PDF
    Document image understanding (DIU) has attracted a lot of attention and became an of active fields of research. Although, the ultimate goal of DIU is extracting textual information of a document image, many steps are involved in a such a process such as categorization, segmentation and layout analysis. All of these steps are needed in order to obtain an accurate result from character recognition or word recognition of a document image. One of the important steps in DIU is document image categorization (DIC) that is needed in many situations such as document image written or printed in more than one script, font or language. This step provides useful information for recognition system and helps in reducing its error by allowing to incorporate a category-specific Optical Character Recognition (OCR) system or word recognition (WR) system. This research focuses on the problem of DIC in different categories of scripts, styles and languages and establishes a framework for flexible representation and feature extraction that can be adapted to many DIC problem. The current methods for DIC have many limitations and drawbacks that restrict the practical usage of these methods. We proposed an efficient framework for categorization of document image based on patch representation and Non-negative Matrix Factorization (NMF). This framework is flexible and can be adapted to different categorization problem. Many methods exist for script identification of document image but few of them addressed the problem in handwritten manuscripts and they have many limitations and drawbacks. Therefore, our first goal is to introduce a novel method for script identification of ancient manuscripts. The proposed method is based on patch representation in which the patches are extracted using skeleton map of a document images. This representation overcomes the limitation of the current methods about the fixed level of layout. The proposed feature extraction scheme based on Projective Non-negative Matrix Factorization (PNMF) is robust against noise and handwriting variation and can be used for different scripts. The proposed method has higher performance compared to state of the art methods and can be applied to different levels of layout. The current methods for font (style) identification are mostly proposed to be applied on machine-printed document image and many of them can only be used for a specific level of layout. Therefore, we proposed new method for font and style identification of printed and handwritten manuscripts based on patch representation and Non-negative Matrix Tri-Factorization (NMTF). The images are represented by overlapping patches obtained from the foreground pixels. The position of these patches are set based on skeleton map to reduce the number of patches. Non-Negative Matrix Tri-Factorization is used to learn bases from each fonts (style) and then these bases are used to classify a new image based on minimum representation error. The proposed method can easily be extended to new fonts as the bases for each font are learned separately from the other fonts. This method is tested on two datasets of machine-printed and ancient manuscript and the results confirmed its performance compared to the state of the art methods. Finally, we proposed a novel method for language identification of printed and handwritten manuscripts based on patch representation and Non-negative Matrix Tri-Factorization (NMTF). The current methods for language identification are based on textual data obtained by OCR engine or images data through coding and comparing with textual data. The OCR based method needs lots of processing and the current image based method are not applicable to cursive scripts such as Arabic. In this work we introduced a new method for language identification of machine-printed and handwritten manuscripts based on patch representation and NMTF. The patch representation provides the component of the Arabic script (letters) that can not be extracted simply by segmentation methods. Then NMTF is used for dictionary learning and generating codebooks that will be used to represent document image with a histogram. The proposed method is tested on two datasets of machine-printed and handwritten manuscripts and compared to n-gram features (text-based), texture features and codebook features (imagebased) to validate the performance. The above proposed methods are robust against variation in handwritings, changes in the font (handwriting style) and presence of degradation and are flexible that can be used to various levels of layout (from a textline to paragraph). The methods in this research have been tested on datasets of handwritten and machine-printed manuscripts and compared to state-of-the-art methods. All of the evaluations show the efficiency, robustness and flexibility of the proposed methods for categorization of document image. As mentioned before the proposed strategies provide a framework for efficient and flexible representation and feature extraction for document image categorization. This frame work can be applied to different levels of layout, the information from different levels of layout can be merged and mixed and this framework can be extended to more complex situations and different tasks
    • …
    corecore