29,201 research outputs found

    Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data : part I

    Get PDF
    The vulnerability of the Global Navigation Satellite System (GNSS) open service signals to spoofing and meaconing poses a risk to the users of safety-of-life applications. This risk consists of using manipulated GNSS data for generating a position-velocity-timing solution without the user's system being aware, resulting in presented hazardous misleading information and signal integrity deterioration without an alarm being triggered. Among the number of proposed spoofing detection and mitigation techniques applied at different stages of the signal processing, we present a method for the cross-correlation monitoring of multiple and statistically significant GNSS observables and measurements that serve as an input for the supervised machine learning detection of potentially spoofed or meaconed GNSS signals. The results of two experiments are presented, in which laboratory-generated spoofing signals are used for training and verification within itself, while two different real-world spoofing and meaconing datasets were used for the validation of the supervised machine learning algorithms for the detection of the GNSS spoofing and meaconing

    Ensemble Committees for Stock Return Classification and Prediction

    Full text link
    This paper considers a portfolio trading strategy formulated by algorithms in the field of machine learning. The profitability of the strategy is measured by the algorithm's capability to consistently and accurately identify stock indices with positive or negative returns, and to generate a preferred portfolio allocation on the basis of a learned model. Stocks are characterized by time series data sets consisting of technical variables that reflect market conditions in a previous time interval, which are utilized produce binary classification decisions in subsequent intervals. The learned model is constructed as a committee of random forest classifiers, a non-linear support vector machine classifier, a relevance vector machine classifier, and a constituent ensemble of k-nearest neighbors classifiers. The Global Industry Classification Standard (GICS) is used to explore the ensemble model's efficacy within the context of various fields of investment including Energy, Materials, Financials, and Information Technology. Data from 2006 to 2012, inclusive, are considered, which are chosen for providing a range of market circumstances for evaluating the model. The model is observed to achieve an accuracy of approximately 70% when predicting stock price returns three months in advance.Comment: 15 pages, 4 figures, Neukom Institute Computational Undergraduate Research prize - second plac

    A bias correction for the minimum error rate in cross-validation

    Full text link
    Tuning parameters in supervised learning problems are often estimated by cross-validation. The minimum value of the cross-validation error can be biased downward as an estimate of the test error at that same value of the tuning parameter. We propose a simple method for the estimation of this bias that uses information from the cross-validation process. As a result, it requires essentially no additional computation. We apply our bias estimate to a number of popular classifiers in various settings, and examine its performance.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS224 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Correcting the optimally selected resampling-based error rate: A smooth analytical alternative to nested cross-validation

    Get PDF
    High-dimensional binary classification tasks, e.g. the classification of microarray samples into normal and cancer tissues, usually involve a tuning parameter adjusting the complexity of the applied method to the examined data set. By reporting the performance of the best tuning parameter value only, over-optimistic prediction errors are published. The contribution of this paper is two-fold. Firstly, we develop a new method for tuning bias correction which can be motivated by decision theoretic considerations. The method is based on the decomposition of the unconditional error rate involving the tuning procedure. Our corrected error estimator can be written as a weighted mean of the errors obtained using the different tuning parameter values. It can be interpreted as a smooth version of nested cross-validation (NCV) which is the standard approach for avoiding tuning bias. In contrast to NCV, the weighting scheme of our method guarantees intuitive bounds for the corrected error. Secondly, we suggest to use bias correction methods also to address the bias resulting from the optimal choice of the classification method among several competitors. This method selection bias is particularly relevant to prediction problems in high-dimensional data. In the absence of standards, it is common practice to try several methods successively, which can lead to an optimistic bias similar to the tuning bias. We demonstrate the performance of our method to address both types of bias based on microarray data sets and compare it to existing methods. This study confirms that our approach yields estimates competitive to NCV at a much lower computational price
    corecore