81,117 research outputs found

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Sarissa

    Get PDF
    W ostatnim okresie daje się zauważyć wzrost zainteresowania wojskowością czasów Filipa II Macedońskiego i Aleksandra III. Jedno z czołowych miejsc wśród studiowanych zagadnień zajmuje problem sarissy. W pracy podjęto próbę wskazania elementów sarissy w materiale archeologicznym. W pierwszej kolejności analizowano kwestię grotu oraz drzewca sarissy. Dane archeologiczne zestawiono z tekstami Ksenofonta, Diodora, Plutarcha, Grattiusa oraz Teofrasta. Zwrócono uwagę na zawarte w nich niejasności, a także odniesiono się do szeregu dotychczasowych błędnych interpretacji. W efekcie sądzić można, że macedońska sarissa to broń o takich samych cechach jak pika znana z czasów późniejszych. Dlatego też w artykule odniesiono się wielokrotnie do broni nowożytnej. W związku z powyższym wykazano na przykład, iż nic mają podstawy sądy o dużych grotach broni Macedończyków.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę

    Dynamic Ordered Sets with Exponential Search Trees

    Full text link
    We introduce exponential search trees as a novel technique for converting static polynomial space search structures for ordered sets into fully-dynamic linear space data structures. This leads to an optimal bound of O(sqrt(log n/loglog n)) for searching and updating a dynamic set of n integer keys in linear space. Here searching an integer y means finding the maximum key in the set which is smaller than or equal to y. This problem is equivalent to the standard text book problem of maintaining an ordered set (see, e.g., Cormen, Leiserson, Rivest, and Stein: Introduction to Algorithms, 2nd ed., MIT Press, 2001). The best previous deterministic linear space bound was O(log n/loglog n) due Fredman and Willard from STOC 1990. No better deterministic search bound was known using polynomial space. We also get the following worst-case linear space trade-offs between the number n, the word length w, and the maximal key U < 2^w: O(min{loglog n+log n/log w, (loglog n)(loglog U)/(logloglog U)}). These trade-offs are, however, not likely to be optimal. Our results are generalized to finger searching and string searching, providing optimal results for both in terms of n.Comment: Revision corrects some typoes and state things better for applications in subsequent paper

    On the performance of a cavity method based algorithm for the Prize-Collecting Steiner Tree Problem on graphs

    Get PDF
    We study the behavior of an algorithm derived from the cavity method for the Prize-Collecting Steiner Tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks networks and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the DHEA solver, a Branch and Cut Linear/Integer Programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two post-processing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases

    Longest Common Separable Pattern between Permutations

    Get PDF
    In this article, we study the problem of finding the longest common separable pattern between several permutations. We give a polynomial-time algorithm when the number of input permutations is fixed and show that the problem is NP-hard for an arbitrary number of input permutations even if these permutations are separable. On the other hand, we show that the NP-hard problem of finding the longest common pattern between two permutations cannot be approximated better than within a ratio of sqrtOptsqrt{Opt} (where OptOpt is the size of an optimal solution) when taking common patterns belonging to pattern-avoiding classes of permutations.Comment: 15 page

    Isotropic Dynamic Hierarchical Clustering

    Get PDF
    We face a need of discovering a pattern in locations of a great number of points in a high-dimensional space. Goal is to group the close points together. We are interested in a hierarchical structure, like a B-tree. B-Trees are hierarchical, balanced, and they can be constructed dynamically. B-Tree approach allows to determine the structure without any supervised learning or a priori knowlwdge. The space is Euclidean and isotropic. Unfortunately, there are no B-Tree implementations processing indices in a symmetrical and isotropical way. Some implementations are based on constructing compound asymmetrical indices from point coordinates; and the others split the nodes along the coordinate hyper-planes. We need to process tens of millions of points in a thousand-dimensional space. The application has to be scalable. Ideally, a cluster should be an ellipsoid, but it would require to store O(n2) ellipse axes. So, we are using multi-dimensional balls defined by the centers and radii. Calculation of statistical values like the mean and the average deviation, can be done in an incremental way. While adding a point to a tree, the statistical values for nodes recalculated in O(1) time. We support both, brute force O(2n) and greedy O(n2) split algorithms. Statistical and aggregated node information also allows to manipulate (to search, to delete) aggregated sets of closely located points. Hierarchical information retrieval. When searching, the user is provided with the highest appropriate nodes in the tree hierarchy, with the most important clusters emerging in the hierarchy automatically. Then, if interested, the user may navigate down the tree to more specific points. The system is implemented as a library of Java classes representing Points, Sets of points with aggregated statistical information, B-tree, and Nodes with a support of serialization and storage in a MySQL database.Comment: 6 pages with 3 example

    A partitioning strategy for nonuniform problems on multiprocessors

    Get PDF
    The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning
    corecore