2,244 research outputs found

    Dependability investigation of wireless short range embedded systems: hardware platform oriented approach

    Get PDF
    A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into critical applications, where the dependability/reliability is mandatory. Thus, dependability concerns around reliability evaluation become a major challenge in these systems, and pose several questions to answer. Obviously, in such systems, the attribute reliability has to be investigated for various components and at different abstraction levels. In this paper, we discuss the investigation of dependability in wireless short range systems. We present a hardware platform for wireless system dependability analysis as an alternative for the time consuming simulation techniques. The platform is built using several instances of one of the commercial FPGA platforms available on the market place. We describe the different steps of building the wireless hardware platform for short range systems dependability analysis. Then, we show how this HW platform based dependability investigation framework can be a very interactive approach. Based on this platform we introduce a new methodology and a flow to investigate the different parts of system dependability at different abstraction levels. The benefits to use the proposed framework are three fold: first, it takes care of the whole system (HW/SW -digital part, mixed RF part, and wireless part); Second, the hardware platform enables to explore the application’s reliability under real environmental conditions taking into account the effect of the environment threats on the system; And last, the wireless platform built for dependability investigation present a fast investigation approach in comparison with the time consuming co-simulation technique

    A Harmonized Compositional Assurance Approach for Safety-Critical Systems

    Get PDF
    Safety-critical systems, those whose failure could end up in loss or injuries to people or the environment, are required to go through laborious and expensive certification processes. These systems have also increased their complexity and as it has already been done in other domains, they have applied component-based system developments to deal with complexity. However, components are difficult to assess as certification is done at system level and not at component level. Compositional certification approach proposes to get incremental credit by accepting that a specific component complies with specific standard’s requirements and it is correctly integrated. The objective is to support integration of new components while the previously integrated components do not need to work for re-acceptance. We propose (1) the use of assurance modelling techniques to provide us the mechanism to understand the common basis of standards shared by different domains such as the avionics, automotive and the medical devices design. We propose (2) an assurance decomposition methodology offering guidance and modelling mechanisms to decompose the responsibilities associated with the life-cycle of safety-critical components. This methodology ensures a hierarchy of assurance and certification projects where the responsibilities and project tasks can be specified and its accomplishment can be assessed to determine the compliance of functional safety standards. Assurance decomposition supports the reuse of components as it guides us not just for standards compliance but specifically on the understanding and tailoring of those standards for component assurance and support when those components are integrated into the final system. We propose (3) a contract-based approach to support the integration of reused components and at the same time, the proposal supports the identification of assumptions, a very laborious and time consuming task. Assurance Contracts are defined to ensure incremental compliance once the components are integrated. The objective of this assurance contracts is to ensure the overall compliance of the system with the selected standards and reference documents such as guidelines or advisory circulars. The defined approach to assurance contracts specification attempts to balance the need for unambiguity on the composition while maintaining the heterogeneity of the information managed. The claims classification offers an easy method to support the assessment of contract completeness and the structured expressions provide a semi-formal language to specify the assumptions and guarantees of a component. This work has been mainly framed in a European collaborative research projects such as OPENCOSS a Large-scale integrating project (IP) with 17 partners from 9 countries to develop a platform for safety assurance and certification of safety-critical systems (compliance with standards, robust argumentation, evidence management, process transparency), SAFEADAPT an FP7 project with 9 partners and RECOMP an ARTEMIS project.. The results of this work have been presented to the standardization group of the Object Management Group responsible for the SACM (Structured Assurance Case Metamodel) standard specification, which currently discusses its inclusion in future versions. The (4) tools presented and used in this work have been included in the results of an open tool platform developed within the OPENCOSS project that is being released in PolarSys. PolarSys is an Eclipse Industry Working Group created by large industry players and by tools providers to collaborate on the creation and support of Open Source tools for the development of embedded systems

    Generation of model-based safety arguments from automatically allocated safety integrity levels

    Get PDF
    To certify safety-critical systems, assurance arguments linking evidence of safety to appropriate requirements must be constructed. However, modern safety-critical systems feature increasing complexity and integration, which render manual approaches impractical to apply. This thesis addresses this problem by introducing a model-based method, with an exemplary application based on the aerospace domain.Previous work has partially addressed this problem for slightly different applications, including verification-based, COTS, product-line and process-based assurance. Each of the approaches is applicable to a specialised case and does not deliver a solution applicable to a generic system in a top-down process. This thesis argues that such a solution is feasible and can be achieved based on the automatic allocation of safety requirements onto a system’s architecture. This automatic allocation is a recent development which combines model-based safety analysis and optimisation techniques. The proposed approach emphasises the use of model-based safety analysis, such as HiP-HOPS, to maximise the benefits towards the system development lifecycle.The thesis investigates the background and earlier work regarding construction of safety arguments, safety requirements allocation and optimisation. A method for addressing the problem of optimal safety requirements allocation is first introduced, using the Tabu Search optimisation metaheuristic. The method delivers satisfactory results that are further exploited for construction of safety arguments. Using the produced requirements allocation, an instantiation algorithm is applied onto a generic safety argument pattern, which is compliant with standards, to automatically construct an argument establishing a claim that a system’s safety requirements have been met. This argument is hierarchically decomposed and shows how system and subsystem safety requirements are satisfied by architectures and analyses at low levels of decomposition. Evaluation on two abstract case studies demonstrates the feasibility and scalability of the method and indicates good performance of the algorithms proposed. Limitations and potential areas of further investigation are identified

    Using embedded hardware monitor cores in critical computer systems

    Get PDF
    The integration of FPGA devices in many different architectures and services makes monitoring and real time detection of errors an important concern in FPGA system design. A monitor is a tool, or a set of tools, that facilitate analytic measurements in observing a given system. The goal of these observations is usually the performance analysis and optimisation, or the surveillance of the system. However, System-on-Chip (SoC) based designs leave few points to attach external tools such as logic analysers. Thus, an embedded error detection core that allows observation of critical system nodes (such as processor cores and buses) should enforce the operation of the FPGA-based system, in order to prevent system failures. The core should not interfere with system performance and must ensure timely detection of errors. This thesis is an investigation onto how a robust hardware-monitoring module can be efficiently integrated in a target PCI board (with FPGA-based application processing features) which is part of a critical computing system. [Continues.

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter

    Re-use of tests and arguments for assesing dependable mixed-critically systems

    Get PDF
    The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to system heterogeneity, design constraints and increasing complexity. The foundation for MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple execution platforms and communication interfaces to implement concurrent functions with different safety requirements. Besides a computing platform providing adequate isolation and fault tolerance mechanism, the development of an MCS application shall also comply with the guidelines defined by the safety standards. A way to lower the overall MCS certification cost is to adopt a platform-based design (PBD) development approach. PBD is a model-based development (MBD) approach, where separate models of logic, hardware and deployment support the analysis of the resulting system properties and behaviour. The PBD development of MCSs benefits from a composition of modular safety properties (e.g. modular safety cases), which support the derivation of mixed-criticality product lines. The validation and verification (V&V) activities claim a substantial effort during the development of programmable electronics for safety-critical applications. As for the MCS dependability assessment, the purpose of the V&V is to provide evidences supporting the safety claims. The model-based development of MCSs adds more V&V tasks, because additional analysis (e.g., simulations) need to be carried out during the design phase. During the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the V&V campaigns, where test automation and fault-injection are the key to test repeatability and thorough exercise of the safety mechanisms. This dissertation proposes several V&V artefacts re-use strategies to perform an early verification at system level for a distributed MCS, artefacts that later would be reused up to the final stages in the development process: a test code re-use to verify the fault-tolerance mechanisms on a functional model of the system combined with a non-intrusive software fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an argumentation framework to support the automated composition and staged completion of modular safety-cases for dependability assessment, in the context of the platform-based development of mixed-criticality systems relying on the DREAMS harmonized platform.La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta con la heterogeneidad del sistema, las restricciones de diseño y una complejidad creciente. Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido compacto comprende múltiples plataformas de ejecución e interfaces de comunicación para implementar funciones concurrentes y con diferentes requisitos de seguridad. Además de una plataforma de computación que provea un aislamiento y mecanismos de tolerancia a fallos adecuados, el desarrollo de una aplicación SCM además debe cumplir con las directrices definidas por las normas de seguridad. Una forma de reducir el coste global de la certificación de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de lógica, hardware y despliegue soportan el análisis de las propiedades y el comportamiento emergente del sistema diseñado. El desarrollo DBP de SCMs se beneficia de una composición modular de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la definición de líneas de productos de criticidad mixta. Las actividades de verificación y validación (V&V) representan un esfuerzo sustancial durante el desarrollo de aplicaciones basadas en electrónica confiable. En la evaluación de la seguridad de un SCM el propósito de las actividades de V&V es obtener las evidencias que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM incrementa las tareas de V&V, porque permite realizar análisis adicionales (por ejemplo, simulaciones) durante la fase de diseño. En las campañas de pruebas de integración de un SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde la automatización de pruebas y la inyección de faltas son la clave para la repetitividad de las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos. Esta tesis propone diversas estrategias de reutilización de artefactos de V&V para la verificación temprana de un MCS distribuido, artefactos que se emplearán en ulteriores fases del desarrollo: la reutilización de código de prueba para verificar los mecanismos de tolerancia a fallos sobre un modelo funcional del sistema combinado con una inyección de fallos de software no intrusiva, la reutilización de modelo a X-in-the-loop (XiL) y código a XiL para obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente, un marco de argumentación para la composición automatizada y la compleción escalonada de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika, hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan. Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren. Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen dute. Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu, kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XiL)-ra eta kodetik XiL-rako konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta gradualki sortzeko

    Managing the Evolution of Dependability Cases for Systems of Systems

    Get PDF
    . Dependability is a composite property consisting of attributes such as reliability, availability, safety and security. The achievement of these attri~utes is often essential for the operational success of systems undertaking critical and complex tasks. .Assurance that the fmal system will demonstrate the required dependability qualities, can be crucial to the acceptance of the system into service. Safety cases are a well established c,oncept used to establish assurance about the safety properties of a system. However, safety cases focus only on one attribute of dependability. The principles and processes ofcreating an integrated dependability case - that assures all aspects of dependable system behaviour - are less well understood. A number of challenges are faced when attempting to support dependability case development. These include the systematic elicitation of dependability goals, the management and justification of trade-offs, and the evolution of multi-attribute arguments in step with the design process. This thesis addresses these challenges by defming a rigorous framework, accompanied by a set of methods, for establishing dependability cases. Firstly, a method for eliciting dependability requirements is defmed by extending existing safety deviational analysis techniques. Secondly, a method for systematically identifying and managing justified trade-offs is presented. Thirdly, the thesis describes the co-evolution of depen~bility . case arguments alongside system development - using a dependability case architecture that corresponds to system structures. Finally, the thesis unifies these contributions by defming a metamodel that captures and interrelates the 'concepts underlying the proposed methods. Evaluation of the work is presented by means of peer review, pilot studies and industrial examples

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming
    corecore