7,863 research outputs found

    Biomimetic Design for Efficient Robotic Performance in Dynamic Aquatic Environments - Survey

    Get PDF
    This manuscript is a review over the published articles on edge detection. At first, it provides theoretical background, and then reviews wide range of methods of edge detection in different categorizes. The review also studies the relationship between categories, and presents evaluations regarding to their application, performance, and implementation. It was stated that the edge detection methods structurally are a combination of image smoothing and image differentiation plus a post-processing for edge labelling. The image smoothing involves filters that reduce the noise, regularize the numerical computation, and provide a parametric representation of the image that works as a mathematical microscope to analyze it in different scales and increase the accuracy and reliability of edge detection. The image differentiation provides information of intensity transition in the image that is necessary to represent the position and strength of the edges and their orientation. The edge labelling calls for post-processing to suppress the false edges, link the dispread ones, and produce a uniform contour of objects

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Scale-Space: A Framework for Handling Image Structures at Multiple Scales

    Get PDF
    This article gives a tutorial overview of essential components of scale-space theory --- a framework for multi-scale signal representation, which has been developed by the computer vision community to analyse and interpret real-world images by automatic methods. 1 The need for multi-scale representation of image data An inherent property of real-world objects is that they only exist as meaningful entities over In: Proc. CERN School of Computing, Egmond aan Zee, The Netherlands, 8--21 September, 1996. certain ranges of scale. A simple example is the concept of a branch of a tree, which makes sense only at a scale from, say, a few centimeters to at most a few meters, It is meaningless to discuss the tree concept at the nanometer or kilometer level. At those scales, it is more relevant to talk about the molecules that form the leaves of the tree, and the forest in which the tree grows, respectively. This fact, that objects in the world appear in different ways depending on the scale of ..

    Image Feature Information Extraction for Interest Point Detection: A Comprehensive Review

    Full text link
    Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated

    Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images

    Get PDF
    ©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Hervella, Á. S., Rouco, J., Novo, J., Penedo, M. G., & Ortega, M. (2020). “Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images” has been accepted for publication in Computer Methods and Programs in Biomedicine, 186(105201), 105201. The Version of Record is available online at: https://doi.org/10.1016/j.cmpb.2019.105201.[Abstract]: Background and objectives:The analysis of the retinal vasculature plays an important role in the diagnosis of many ocular and systemic diseases. In this context, the accurate detection of the vessel crossings and bifurcations is an important requirement for the automated extraction of relevant biomarkers. In that regard, we propose a novel approach that addresses the simultaneous detection of vessel crossings and bifurcations in eye fundus images. Method: We propose to formulate the detection of vessel crossings and bifurcations in eye fundus images as a multi-instance heatmap regression. In particular, a deep neural network is trained in the prediction of multi-instance heatmaps that model the likelihood of a pixel being a landmark location. This novel approach allows to make predictions using full images and integrates into a single step the detection and distinction of the vascular landmarks. Results: The proposed method is validated on two public datasets of reference that include detailed annotations for vessel crossings and bifurcations in eye fundus images. The conducted experiments evidence that the proposed method offers a satisfactory performance. In particular, the proposed method achieves 74.23% and 70.90% F-score for the detection of crossings and bifurcations, respectively, in color fundus images. Furthermore, the proposed method outperforms previous works by a significant margin. Conclusions: The proposed multi-instance heatmap regression allows to successfully exploit the potential of modern deep learning algorithms for the simultaneous detection of retinal vessel crossings and bifurcations. Consequently, this results in a significant improvement over previous methods, which will further facilitate the automated analysis of the retinal vasculature in many pathological conditions.This work is supported by Instituto de Salud Carlos III, Government of Spain, and the European Regional Development Fund (ERDF) of the European Union (EU) through the DTS18/00136 research project, and by Ministerio de Ciencia, Innovación y Universidades, Government of Spain, through the DPI2015-69948-R and RTI2018-095894-B-I00 research projects. The authors of this work also receive financial support from the ERDF and European Social Fund (ESF) of the EU, and Xunta de Galicia through Centro Singular de Investigación de Galicia, accreditation 2016–2019, ref. ED431G/01, Grupo de Referencia Competitiva, ref. ED431C 2016-047, and the predoctoral grant contract ref. ED481A-2017/328.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-047Xunta de Galicia; ED481A-2017/32

    Edge detection and ridge detection with automatic scale selection

    Full text link
    When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting one-dimensional features, such as edges and ridges. Anovel concept of a scale-space edge is introduced, defined as a connected set of points in scale-space at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important property of this definition is that it allows the scale levels to vary along the edge. Two specific measures of edge strength are analysed in detail. It is shown that by expressing these in terms of γ-normalized derivatives, an immediate consequence of this definition is that fine scales are selected for sharp edges (so as to reduce the shape distortions due to scale-space smoothing), whereas coarse scales are selected for diffuse edges, such that an edge model constitutes a valid abstraction of the intensity profile across the edge. With slight modifications, this idea can be used for formulating a ridge detector with automatic scale selection, having the characteristic property that the selected scales on a scale-space ridge instead reflect the width of the ridge
    corecore