1,691 research outputs found

    Knowledge Management in Software Development

    Get PDF

    Ontologies learn by searching

    Get PDF
    Dissertation to obtain the Master degree in Electrical Engineering and Computer ScienceDue to the worldwide diversity of communities, a high number of ontologies representing the same segment of reality which are not semantically coincident have appeared. To solve this problem, a possible solution is to use a reference ontology to be the intermediary in the communications between the community enterprises and to outside. Since semantic mappings between enterprise‘s ontologies are established, this solution allows each of the enterprises to keep internally its own ontology and semantics unchanged. However information systems are not static, thus established mappings become obsoletes with time. This dissertation‘s objective is to identify a suitable method that combines semantic mappings with user‘s feedback, providing an automatic learning to ontologies & enabling auto-adaptability and dynamism to the information system

    Models for Learning (Mod4L) Final Report: Representing Learning Designs

    Get PDF
    The Mod4L Models of Practice project is part of the JISC-funded Design for Learning Programme. It ran from 1 May – 31 December 2006. The philosophy underlying the project was that a general split is evident in the e-learning community between development of e-learning tools, services and standards, and research into how teachers can use these most effectively, and is impeding uptake of new tools and methods by teachers. To help overcome this barrier and bridge the gap, a need is felt for practitioner-focused resources which describe a range of learning designs and offer guidance on how these may be chosen and applied, how they can support effective practice in design for learning, and how they can support the development of effective tools, standards and systems with a learning design capability (see, for example, Griffiths and Blat 2005, JISC 2006). Practice models, it was suggested, were such a resource. The aim of the project was to: develop a range of practice models that could be used by practitioners in real life contexts and have a high impact on improving teaching and learning practice. We worked with two definitions of practice models. Practice models are: 1. generic approaches to the structuring and orchestration of learning activities. They express elements of pedagogic principle and allow practitioners to make informed choices (JISC 2006) However, however effective a learning design may be, it can only be shared with others through a representation. The issue of representation of learning designs is, then, central to the concept of sharing and reuse at the heart of JISC’s Design for Learning programme. Thus practice models should be both representations of effective practice, and effective representations of practice. Hence we arrived at the project working definition of practice models as: 2. Common, but decontextualised, learning designs that are represented in a way that is usable by practitioners (teachers, managers, etc).(Mod4L working definition, Falconer & Littlejohn 2006). A learning design is defined as the outcome of the process of designing, planning and orchestrating learning activities as part of a learning session or programme (JISC 2006). Practice models have many potential uses: they describe a range of learning designs that are found to be effective, and offer guidance on their use; they support sharing, reuse and adaptation of learning designs by teachers, and also the development of tools, standards and systems for planning, editing and running the designs. The project took a practitioner-centred approach, working in close collaboration with a focus group of 12 teachers recruited across a range of disciplines and from both FE and HE. Focus group members are listed in Appendix 1. Information was gathered from the focus group through two face to face workshops, and through their contributions to discussions on the project wiki. This was supplemented by an activity at a JISC pedagogy experts meeting in October 2006, and a part workshop at ALT-C in September 2006. The project interim report of August 2006 contained the outcomes of the first workshop (Falconer and Littlejohn, 2006). The current report refines the discussion of issues of representing learning designs for sharing and reuse evidenced in the interim report and highlights problems with the concept of practice models (section 2), characterises the requirements teachers have of effective representations (section 3), evaluates a number of types of representation against these requirements (section 4), explores the more technically focused role of sequencing representations and controlled vocabularies (sections 5 & 6), documents some generic learning designs (section 8.2) and suggests ways forward for bridging the gap between teachers and developers (section 2.6). All quotations are taken from the Mod4L wiki unless otherwise stated

    Using Unified Personal Information in Workspaces

    Get PDF
    Knowledge workers (KWers) deal with personal information and use tools like, e.g., desktop workspaces to support their work. But KWer support is hindered by personal information fragmentation, i.e., applications keep a set of personal information while not interconnecting it. This thesis addresses this in the domains personal task management and meeting management by using a common unified personal information model as offered by the semantic desktop personal information management (PIM) system

    Mining Meaning from Wikipedia

    Get PDF
    Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts and relations that is being applied to a host of tasks. This article provides a comprehensive description of this work. It focuses on research that extracts and makes use of the concepts, relations, facts and descriptions found in Wikipedia, and organizes the work into four broad categories: applying Wikipedia to natural language processing; using it to facilitate information retrieval and information extraction; and as a resource for ontology building. The article addresses how Wikipedia is being used as is, how it is being improved and adapted, and how it is being combined with other structures to create entirely new resources. We identify the research groups and individuals involved, and how their work has developed in the last few years. We provide a comprehensive list of the open-source software they have produced.Comment: An extensive survey of re-using information in Wikipedia in natural language processing, information retrieval and extraction and ontology building. Accepted for publication in International Journal of Human-Computer Studie

    Applying Wikipedia to Interactive Information Retrieval

    Get PDF
    There are many opportunities to improve the interactivity of information retrieval systems beyond the ubiquitous search box. One idea is to use knowledge bases—e.g. controlled vocabularies, classification schemes, thesauri and ontologies—to organize, describe and navigate the information space. These resources are popular in libraries and specialist collections, but have proven too expensive and narrow to be applied to everyday webscale search. Wikipedia has the potential to bring structured knowledge into more widespread use. This online, collaboratively generated encyclopaedia is one of the largest and most consulted reference works in existence. It is broader, deeper and more agile than the knowledge bases put forward to assist retrieval in the past. Rendering this resource machine-readable is a challenging task that has captured the interest of many researchers. Many see it as a key step required to break the knowledge acquisition bottleneck that crippled previous efforts. This thesis claims that the roadblock can be sidestepped: Wikipedia can be applied effectively to open-domain information retrieval with minimal natural language processing or information extraction. The key is to focus on gathering and applying human-readable rather than machine-readable knowledge. To demonstrate this claim, the thesis tackles three separate problems: extracting knowledge from Wikipedia; connecting it to textual documents; and applying it to the retrieval process. First, we demonstrate that a large thesaurus-like structure can be obtained directly from Wikipedia, and that accurate measures of semantic relatedness can be efficiently mined from it. Second, we show that Wikipedia provides the necessary features and training data for existing data mining techniques to accurately detect and disambiguate topics when they are mentioned in plain text. Third, we provide two systems and user studies that demonstrate the utility of the Wikipedia-derived knowledge base for interactive information retrieval

    A socio-technological approach to sharing knowledge across disciplines

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Knowledge Representation in Engineering 4.0

    Get PDF
    This dissertation was developed in the context of the BMBF and EU/ECSEL funded projects GENIAL! and Arrowhead Tools. In these projects the chair examines methods of specifications and cooperations in the automotive value chain from OEM-Tier1-Tier2. Goal of the projects is to improve communication and collaborative planning, especially in early development stages. Besides SysML, the use of agreed vocabularies and on- tologies for modeling requirements, overall context, variants, and many other items, is targeted. This thesis proposes a web database, where data from the collaborative requirements elicitation is combined with an ontology-based approach that uses reasoning capabilities. For this purpose, state-of-the-art ontologies have been investigated and integrated that entail domains like hardware/software, roadmapping, IoT, context, innovation and oth- ers. New ontologies have been designed like a HW / SW allocation ontology and a domain-specific "eFuse ontology" as well as some prototypes. The result is a modular ontology suite and the GENIAL! Basic Ontology that allows us to model automotive and microelectronic functions, components, properties and dependencies based on the ISO26262 standard among these elements. Furthermore, context knowledge that influences design decisions such as future trends in legislation, society, environment, etc. is included. These knowledge bases are integrated in a novel tool that allows for collabo- rative innovation planning and requirements communication along the automotive value chain. To start off the work of the project, an architecture and prototype tool was developed. Designing ontologies and knowing how to use them proved to be a non-trivial task, requiring a lot of context and background knowledge. Some of this background knowledge has been selected for presentation and was utilized either in designing models or for later immersion. Examples are basic foundations like design guidelines for ontologies, ontology categories and a continuum of expressiveness of languages and advanced content like multi-level theory, foundational ontologies and reasoning. Finally, at the end, we demonstrate the overall framework, and show the ontology with reasoning, database and APPEL/SysMD (AGILA ProPErty and Dependency Descrip- tion Language / System MarkDown) and constraints of the hardware / software knowledge base. There, by example, we explore and solve roadmap constraints that are coupled with a car model through a constraint solver.Diese Dissertation wurde im Kontext des von BMBF und EU / ECSEL gefördertem Projektes GENIAL! und Arrowhead Tools entwickelt. In diesen Projekten untersucht der Lehrstuhl Methoden zur Spezifikationen und Kooperation in der Automotive Wertschöp- fungskette, von OEM zu Tier1 und Tier2. Ziel der Arbeit ist es die Kommunikation und gemeinsame Planung, speziell in den frühen Entwicklungsphasen zu verbessern. Neben SysML ist die Benutzung von vereinbarten Vokabularen und Ontologien in der Modellierung von Requirements, des Gesamtkontextes, Varianten und vielen anderen Elementen angezielt. Ontologien sind dabei eine Möglichkeit, um das Vermeiden von Missverständnissen und Fehlplanungen zu unterstützen. Dieser Ansatz schlägt eine Web- datenbank vor, wobei Ontologien das Teilen von Wissen und das logische Schlussfolgern von implizitem Wissen und Regeln unterstützen. Diese Arbeit beschreibt Ontologien für die Domäne des Engineering 4.0, oder spezifischer, für die Domäne, die für das deutsche Projekt GENIAL! benötigt wurde. Dies betrifft Domänen, wie Hardware und Software, Roadmapping, Kontext, Innovation, IoT und andere. Neue Ontologien wurden entworfen, wie beispielsweise die Hardware-Software Allokations-Ontologie und eine domänen-spezifische "eFuse Ontologie". Das Ergebnis war eine modulare Ontologie-Bibliothek mit der GENIAL! Basic Ontology, die es erlaubt, automotive und mikroelektronische Komponenten, Funktionen, Eigenschaften und deren Abhängigkeiten basierend auf dem ISO26262 Standard zu entwerfen. Des weiteren ist Kontextwissen, welches Entwurfsentscheidungen beinflusst, inkludiert. Diese Wissensbasen sind in einem neuartigen Tool integriert, dass es ermöglicht, Roadmapwissen und Anforderungen durch die Automobil- Wertschöpfungskette hinweg auszutauschen. On tologien zu entwerfen und zu wissen, wie man diese benutzt, war dabei keine triviale Aufgabe und benötigte viel Hintergrund- und Kontextwissen. Ausgewählte Grundlagen hierfür sind Richtlinien, wie man Ontologien entwirft, Ontologiekategorien, sowie das Spektrum an Sprachen und Formen von Wissensrepresentationen. Des weiteren sind fort- geschrittene Methoden erläutert, z.B wie man mit Ontologien Schlußfolgerungen trifft. Am Schluss wird das Overall Framework demonstriert, und die Ontologie mit Reason- ing, Datenbank und APPEL/SysMD (AGILA ProPErty and Dependency Description Language / System MarkDown) und Constraints der Hardware / Software Wissensbasis gezeigt. Dabei werden exemplarisch Roadmap Constraints mit dem Automodell verbunden und durch den Constraint Solver gelöst und exploriert

    Broken Technologies

    Get PDF
    There are many possible definitions of “technology” and I will discuss some of these in this book. However, in this introduction let me use a definition of Svante Lindqvist who defines technology very intuitively as “those activities, directed towards the satisfaction of human wants, which produce change in the material world.” He says also “the distinction between human “wants” and more limited human “needs” is crucial, for we do not use technology only to satisfy our essential material requirements.” Consequently, from this perspective, a technology that is “broken” could be defined as those activities, directed towards the satisfaction of human wants that are intended to produce changes in the material world that either do not manage to satisfy these wants or do not produce changes in the material world, or both. This is the third edition, updated October 2015
    corecore