307,073 research outputs found
Fault reconstruction using a LPV sliding mode observer for a class of LPV systems
Journal ArticleCopyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of The Franklin Institute. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of The Franklin Institute (2012), DOI: 10.1016/j.jfranklin.2011.06.026This paper proposes a new sliding mode observer for fault reconstruction, applicable for a class of linear parameter varying (LPV) systems. Observer schemes for actuator and sensor fault reconstruction are presented. For the actuator fault reconstruction scheme, a virtual system comprising the system matrix and a fixed input distribution matrix is used for the design of the observer. The fixed input distribution matrix is instrumental in simplifying the synthesis procedure to create the observer gains to ensure a stable closed-loop reduced order sliding motion. The 'output error injection signals' from the observer are used as the basis for reconstructing the fault signals. For the sensor fault observer design, augmenting the LPV system with a filtered version of the faulty measurements allows the sensor fault reconstruction problem to be posed as an actuator fault reconstruction scenario. Simulation tests based on a high-fidelity nonlinear model of a transport aircraft have been used to demonstrate the proposed actuator and sensor FDI schemes. The simulation results show their efficacy. © 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved
The synthesis of sequential switching circuits
"January 10, 1954." "Reprinted from Journal of the Franklin Institute, vol. 257, no.3, March, 1954."Includes bibliographical references.Army Signal Corps Contract No. DA36-039 sc-100, Project 8-102B-0. Dept. of the Army Project No. 3-99-10-022.by D.A. Huffman
A Statistical Analysis of Multipath Interference for Impulse Radio UWB Systems
In this paper, we develop a statistical characterization of the multipath
interference in an Impulse Radio (IR)-UWB system, considering the standardized
IEEE 802.15.4a channel model. In such systems, the chip length has to be
carefully tuned as all the propagation paths located beyond this limit can
cause interframe/intersymbol interferences (IFI/ISI). Our approach aims at
computing the probability density function (PDF) of the power of all multipath
components with delays larger than the chip time, so as to prevent such
interferences. Exact analytical expressions are derived first for the
probability that the chip length falls into a particular cluster of the
multipath propagation model and for the statistics of the number of paths
spread over several contiguous clusters. A power delay profile (PDP)
approximation is then used to evaluate the total interference power as the
problem appears to be mathematically intractable. Using the proposed
closed-form expressions, and assuming minimal prior information on the channel
state, a rapid update of the chip time value is enabled so as to control the
signal to interference plus noise ratio.Comment: 17 pages, 9 figures; submitted to the Journal of the Franklin
Institute on Sept. 24, 201
Sir William Leonard Dale 1906-2000: An appreciation
An appreciation of the life and work of the late Sir William Dale. An obituary of Sir William Dale by Sir Franklin Berman QC. Published in Amicus Curiae - Journal of the Institute of Advanced Legal Studies and its Society for Advanced Legal Studies. The Journal is produced by the Society for Advanced Legal Studies at the Institute of Advanced Legal Studies, University of London
Recommended from our members
Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures
In recent years different inerter - based vibration absorbers (IVAs) emerged for the earthquake protection of building structures coupling viscous and tuned - mass dampers with an inerter device . In the three most popular IVAs the inerter is functioning either as a motion amplifier [tuned - viscous - mass - damper (TVMD) configuration], mass amplifier [tuned - mass - damper - inerter (T MDI) configuration], or mass substitute [tuned - inerter - damper (TID) configuration]. Previous work has shown that through proper tuning , IVAs achieve enhanced earthquake - induced vibration suppression and/or weight reduction compared to conventional dampers/absorbers , but at the expense of increased control forces exerted from the IVA to the host building structure . These potentially large forces are typically not accounted for by current IVA tuning approaches. In this regard, a multi-objective IVA design approach is herein developed to identify the compromise between the competing objectives of (i) suppressing earthquake-induced vibrations in buildings, and (ii) avoiding development of excessive IVA (control) forces, while, simultaneously, assessing the appropriateness of different modeling assumptions for practical design of IVAs for earthquake engineering applications . The potential of the approach to pinpoint Pareto optimal IVA designs against the above objectives is illustrated for different IVA placements along the height of a benchmark 9-storey steel frame structure. Objective (i) is quantified according to current performanc e-based seismic design trends using first-passage reliability criteria associated with the probability of exceeding pre-specified thresholds of storey drifts and/or floor accelerations being the engineering demand parameters (EDPs) of interest . A variant, simpler, formulation is also considered using as performance quantification the sum of EDPs variances in accordance to traditional tuning methods for dynamic vibration absorbers. Objective (ii) is quantified through the variance of the IVA force. It is found that reduction of IVA control force of up to 3 times can be achieved with insignificant deterioration of building performance com pared to the extreme Pareto optimal IVA design targeting maximum vibration suppression , while TID and TMDI a chieve practically the same building performance and significantly outperform the TVMD. Moreover, it is shown that the simpler variant formulation may provide significantly suboptimal reliability performance . Lastly, it is verified that the efficacy of optimal IVA designs for stationary conditions is maintained for non-stationary stochastic excitation model capturing typical evolutionary features of earthquake excitations
Bounded real lemmas for positive descriptor systems
A well known result in the theory of linear positive systems is the existence of positive definite diagonal matrix (PDDM) solutions to some well known linear matrix inequalities (LMIs). In this paper, based on the positivity characterization, a novel bounded real lemma for continuous positive descriptor systems in terms of strict LMI is first established by the separating hyperplane theorem. The result developed here provides a necessary and sufficient condition for systems to possess H?H? norm less than ? and shows the existence of PDDM solution. Moreover, under certain condition, a simple model reduction method is introduced, which can preserve positivity, stability and H?H? norm of the original systems. An advantage of such method is that systems? matrices of the reduced order systems do not involve solving of LMIs conditions. Then, the obtained results are extended to discrete case. Finally, a numerical example is given to illustrate the effectiveness of the obtained results
A Community-Focused Health & Work Service (HWS)
We recommend establishment of a community-focused Health & Work Service (HWS) dedicated to responding rapidly to new health-related work absence among working people due to potentially disabling conditions. The first few days and weeks after onset are an especially critical period during which the likelihood of a good long-term outcome is being influenced, either favorably or unfavorably, by some simple things that either do or do not happen during that interval. It is the optimal window of opportunity to improve outcomes by simultaneously attending to the worker’s basic needs and concerns as well as coordinating the medical, functional restoration, and occupational aspects of the situation in a coordinated fashion
Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer
This paper characterizes three novel microwave applicators based on zero-order mode resonators for use in hyperthermia treatment of cancer. The radiation patterns are studied with numerical simulations in muscle tissue-equivalent model at 434 MHz. The relative performance of the applicators is compared in terms of reflection coefficient, current distribution, power deposition (SAR) pattern, effective field size in 2D and 3D tissue volumes, and penetration depth. One particular configuration generated the most uniform SAR pattern, with 25% SAR covering 84 % of the treatment volume extending to 1 cm depth under the aperture, while remaining above 58% coverage as deep as 3 cm under the aperture. Recommendations are made to further optimize this structure
- …
