197,220 research outputs found

    The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations

    Full text link
    In scheduling, estimations are affected by the imprecision of limited information on future events, and the reduction in the number and level of detail of activities. Overlapping of processes and activities requires the study of their continuity, along with analysis of the risks associated with imprecision. In this line, this paper proposes a fuzzy heuristic model for the Project Scheduling Problem with flows and minimal feeding, time and work Generalized Precedence Relations with a realistic approach to overlapping, in which the continuity of processes and activities is allowed in a discretionary way. This fuzzy algorithm handles the balance of process flows, and computes the optimal fragmentation of tasks, avoiding the interruption of the critical path and reverse criticality. The goodness of this approach is tested on several problems found in the literature; furthermore, an example of a 15-story building was used to compare the better performance of the algorithm implemented in Visual Basic for Applications (Excel) over that same example input in Primavera© P6 Professional V8.2.0, using five different scenarios.This research was supported by the FAPA program of Universidad de Los Andes, Colombia. The authors would like to thank the research group of Construction Engineering and Management (INgeco) of Universidad de Los Andes, and the five anonymous referees for their helpful and constructive suggestions.Ponz Tienda, JL.; Pellicer Armiñana, E.; Benlloch Marco, J.; Andrés Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering. 30(11):872-891. doi:10.1111/mice.12166S8728913011Adeli, H., & Park, H. S. (1995). Optimization of space structures by neural dynamics. Neural Networks, 8(5), 769-781. doi:10.1016/0893-6080(95)00026-vAdeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317Ammar, M. A. (2013). LOB and CPM Integrated Method for Scheduling Repetitive Projects. Journal of Construction Engineering and Management, 139(1), 44-50. doi:10.1061/(asce)co.1943-7862.0000569Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.xBai, L., Yan, L., & Ma, Z. M. (2014). Querying fuzzy spatiotemporal data using XQuery. Integrated Computer-Aided Engineering, 21(2), 147-162. doi:10.3233/ica-130454Ballesteros-Pérez, P., González-Cruz, M. C., Cañavate-Grimal, A., & Pellicer, E. (2013). Detecting abnormal and collusive bids in capped tendering. Automation in Construction, 31, 215-229. doi:10.1016/j.autcon.2012.11.036Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199-240. doi:10.1007/bf02283745Bianco, L., & Caramia, M. (2011). Minimizing the completion time of a project under resource constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR, 9(4), 371-389. doi:10.1007/s10288-011-0168-6Bonnal, P., Gourc, D., & Lacoste, G. (2004). Where Do We Stand with Fuzzy Project Scheduling? Journal of Construction Engineering and Management, 130(1), 114-123. doi:10.1061/(asce)0733-9364(2004)130:1(114)Brunelli, M., & Mezei, J. (2013). How different are ranking methods for fuzzy numbers? A numerical study. International Journal of Approximate Reasoning, 54(5), 627-639. doi:10.1016/j.ijar.2013.01.009Buckley, J. J., & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. doi:10.1007/978-3-7908-1799-7Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10), 1096-1104. doi:10.1061/(asce)0733-9364(2009)135:10(1096)Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in pert. Fuzzy Sets and Systems, 5(1), 11-19. doi:10.1016/0165-0114(81)90030-0In Seong Chang, Yasuhiro Tsujimura, Mitsuo Gen, & Tatsumi Tozawa. (1995). An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets and Systems, 76(3), 277-288. doi:10.1016/0165-0114(94)00385-4Chen, C.-T., & Huang, S.-F. (2007). Applying fuzzy method for measuring criticality in project network. Information Sciences, 177(12), 2448-2458. doi:10.1016/j.ins.2007.01.035Shyi-Ming Chen, & Tao-Hsing Chang. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 31(6), 930-937. doi:10.1109/3477.969496Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038Dell’Orco, M., & Mellano, M. (2013). A New User-Oriented Index, Based on a Fuzzy Inference System, for Quality Evaluation of Rural Roads. Computer-Aided Civil and Infrastructure Engineering, 28(8), 635-647. doi:10.1111/mice.12021Deng, H. (2014). Comparing and ranking fuzzy numbers using ideal solutions. Applied Mathematical Modelling, 38(5-6), 1638-1646. doi:10.1016/j.apm.2013.09.012De Reyck, B., & Herroelen, willy. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174. doi:10.1016/s0377-2217(97)00305-6De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556. doi:10.1016/s0377-2217(99)00151-4Dubois, D., Fargier, H., & Galvagnon, V. (2003). On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research, 147(2), 266-280. doi:10.1016/s0377-2217(02)00560-xElmaghraby, S. E., & Kamburowski, J. (1992). The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs). Management Science, 38(9), 1245-1263. doi:10.1287/mnsc.38.9.1245Fondahl , J. W. 1961 A Non-Computer Approach to the Critical Path Method for the Construction IndustryFougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Gil-Aluja, J. (2004). Fuzzy Sets in the Management of Uncertainty. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39699-4Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-5951-8Harris, R. B., & Ioannou, P. G. (1998). Scheduling Projects with Repeating Activities. Journal of Construction Engineering and Management, 124(4), 269-278. doi:10.1061/(asce)0733-9364(1998)124:4(269)Hejducki, Z. (2004). Sequencing problems in methods of organising construction processes. Engineering, Construction and Architectural Management, 11(1), 20-32. doi:10.1108/09699980410512638Hebert, J. E., & Deckro, R. F. (2011). Combining contemporary and traditional project management tools to resolve a project scheduling problem. Computers & Operations Research, 38(1), 21-32. doi:10.1016/j.cor.2009.12.004Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002IBM 1968Jahani, E., Muhanna, R. L., Shayanfar, M. A., & Barkhordari, M. A. (2013). Reliability Assessment with Fuzzy Random Variables Using Interval Monte Carlo Simulation. Computer-Aided Civil and Infrastructure Engineering, 29(3), 208-220. doi:10.1111/mice.12028Karim, A., & Adeli, H. (1999). OO Information Model for Construction Project Management. Journal of Construction Engineering and Management, 125(5), 361-367. doi:10.1061/(asce)0733-9364(1999)125:5(361)Karim, A., & Adeli, H. (1999). CONSCOM: An OO Construction Scheduling and Change Management System. Journal of Construction Engineering and Management, 125(5), 368-376. doi:10.1061/(asce)0733-9364(1999)125:5(368)KARIM, A., & ADELI, H. (1999). A new generation software for construction scheduling and management. Engineering, Construction and Architectural Management, 6(4), 380-390. doi:10.1108/eb021126Kim, S.-G. (2012). CPM Schedule Summarizing Function of the Beeline Diagramming Method. Journal of Asian Architecture and Building Engineering, 11(2), 367-374. doi:10.3130/jaabe.11.367Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Mathematical Programming, 103(3), 515-539. doi:10.1007/s10107-004-0551-6Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1997). A Model-Based Framework to Overlap Product Development Activities. Management Science, 43(4), 437-451. doi:10.1287/mnsc.43.4.437LEACHMAN, R. C., DTNCERLER, A., & KIM, S. (1990). Resource-Constrained Scheduling of Projects with Variable-Intensity Activities. IIE Transactions, 22(1), 31-40. doi:10.1080/07408179008964155Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073Long, L. D., & Ohsato, A. (2008). Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. International Journal of Project Management, 26(6), 688-698. doi:10.1016/j.ijproman.2007.09.012Lootsma, F. A. (1989). Stochastic and fuzzy Pert. European Journal of Operational Research, 43(2), 174-183. doi:10.1016/0377-2217(89)90211-7Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a Technique for Research and Development Program Evaluation. Operations Research, 7(5), 646-669. doi:10.1287/opre.7.5.646Maravas, A., & Pantouvakis, J.-P. (2011). Fuzzy Repetitive Scheduling Method for Projects with Repeating Activities. Journal of Construction Engineering and Management, 137(7), 561-564. doi:10.1061/(asce)co.1943-7862.0000319PONZ TIENDA, J. L., BENLLOCH MARCO, J., ANDRÉS ROMANO, C., & SENABRE, D. (2011). Un algoritmo matricial RUPSP / GRUPSP «sin interrupción» para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos. Revista de la construcción, 10(2), 90-103. doi:10.4067/s0718-915x2011000200009Ponz-Tienda, J. L., Pellicer, E., & Yepes, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University SCIENCE A, 13(1), 56-68. doi:10.1631/jzus.a1100160Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003Prade, H. (1979). Using fuzzy set theory in a scheduling problem: A case study. Fuzzy Sets and Systems, 2(2), 153-165. doi:10.1016/0165-0114(79)90022-8Quintanilla, S., Pérez, Á., Lino, P., & Valls, V. (2012). Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres. European Journal of Operational Research, 219(1), 59-72. doi:10.1016/j.ejor.2011.12.018Rommelfanger, H. J. (1994). Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, 67(1), 119-128. doi:10.1016/0165-0114(94)90212-7Senouci, A. B., & Adeli, H. (2001). Resource Scheduling Using Neural Dynamics Model of Adeli and Park. Journal of Construction Engineering and Management, 127(1), 28-34. doi:10.1061/(asce)0733-9364(2001)127:1(28)Seppänen, O., Evinger, J., & Mouflard, C. (2014). Effects of the location-based management system on production rates and productivity. Construction Management and Economics, 32(6), 608-624. doi:10.1080/01446193.2013.853881Shi, Q., & Blomquist, T. (2012). A new approach for project scheduling using fuzzy dependency structure matrix. International Journal of Project Management, 30(4), 503-510. doi:10.1016/j.ijproman.2011.11.003Srour, I. M., Abdul-Malak, M.-A. U., Yassine, A. A., & Ramadan, M. (2013). A methodology for scheduling overlapped design activities based on dependency information. Automation in Construction, 29, 1-11. doi:10.1016/j.autcon.2012.08.001Valls, V., & Lino, P. (2001). Annals of Operations Research, 102(1/4), 17-37. doi:10.1023/a:1010941729204Valls, V., Mart�, R., & Lino, P. (1996). A heuristic algorithm for project scheduling with splitting allowed. Journal of Heuristics, 2(1), 87-104. doi:10.1007/bf00226294Wang, Y.-M., Yang, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919-926. doi:10.1016/j.fss.2005.11.006Wiest, J. D. (1981). Precedence diagramming method: Some unusual characteristics and their implications for project managers. Journal of Operations Management, 1(3), 121-130. doi:10.1016/0272-6963(81)90015-2Yan, L., & Ma, Z. M. (2013). Conceptual design of object-oriented databases for fuzzy engineering information modeling. Integrated Computer-Aided Engineering, 20(2), 183-197. doi:10.3233/ica-130427Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic Method-Based Particle Swarm Optimization for a Queuing Network Problem with Fuzzy Data in Concrete Transportation Systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800. doi:10.1111/mice.12111Zhang, X., Li, Y., Zhang, S., & Schlick, C. M. (2013). Modelling and simulation of the task scheduling behavior in collaborative product development process. Integrated Computer-Aided Engineering, 20(1), 31-44. doi:10.3233/ica-12041

    An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints

    Full text link
    [EN] Nowadays, the manufacturing industry faces the challenge of reducing energy consumption and the associated environmental impacts. Production scheduling is an effective approach for energy-savings management. During the entire workshop production process, both the processing and transportation operations consume large amounts of energy. To reduce energy consumption, an energy-efficient job-shop scheduling problem (EJSP) with transportation constraints was proposed in this paper. First, a mixed-integer programming model was established to minimize both the comprehensive energy consumption and makespan in the EJSP. Then, an enhanced estimation of distribution algorithm (EEDA) was developed to solve the problem. In the proposed algorithm, an estimation of distribution algorithm was employed to perform the global search and an improved simulated annealing algorithm was designed to perform the local search. Finally, numerical experiments were implemented to analyze the performance of the EEDA. The results showed that the EEDA is a promising approach and that it can solve EJSP effectively and efficiently.This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB460018), the Innovation Foundation for Science and Technology of Yangzhou University (No. 2016CXJ020 and No. 2017CXJ018), Science and Technology Project of Yangzhou under (No. YZ2017278), Research Topics of Teaching Reform of Yangzhou University under (No. YZUJX2018-28B), and the Spanish Government (No. TIN2016-80856-R and No. TIN2015-65515-C4-1-R).Dai, M.; Zhang, Z.; Giret Boggino, AS.; Salido, MA. (2019). An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints. Sustainability. 11(11):1-23. https://doi.org/10.3390/su11113085S1231111Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner Production, 172, 3249-3264. doi:10.1016/j.jclepro.2017.10.342Wang, Q., Tang, D., Li, S., Yang, J., Salido, M., Giret, A., & Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability, 11(2), 460. doi:10.3390/su11020460Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12), 4779. doi:10.3390/su10124779Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004Lee, S., Do Chung, B., Jeon, H. W., & Chang, J. (2017). A dynamic control approach for energy-efficient production scheduling on a single machine under time-varying electricity pricing. Journal of Cleaner Production, 165, 552-563. doi:10.1016/j.jclepro.2017.07.102Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers & Industrial Engineering, 127, 240-252. doi:10.1016/j.cie.2018.12.020Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251-256. doi:10.1016/j.procir.2019.01.062Li, J., Sang, H., Han, Y., Wang, C., & Gao, K. (2018). Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598. doi:10.1016/j.jclepro.2018.02.004Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011Fu, Y., Tian, G., Fathollahi-Fard, A. M., Ahmadi, A., & Zhang, C. (2019). Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. Journal of Cleaner Production, 226, 515-525. doi:10.1016/j.jclepro.2019.04.046Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434. doi:10.1016/j.jclepro.2019.03.155Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0Masmoudi, O., Delorme, X., & Gianessi, P. (2019). Job-shop scheduling problem with energy consideration. International Journal of Production Economics, 216, 12-22. doi:10.1016/j.ijpe.2019.03.021Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004Meng, L., Zhang, C., Shao, X., & Ren, Y. (2019). MILP models for energy-aware flexible job shop scheduling problem. Journal of Cleaner Production, 210, 710-723. doi:10.1016/j.jclepro.2018.11.021Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157. doi:10.1016/j.rcim.2019.04.006Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Economics, 143(1), 24-34. doi:10.1016/j.ijpe.2010.07.012Nageswararao, M., Narayanarao, K., & Ranagajanardhana, G. (2014). Simultaneous Scheduling of Machines and AGVs in Flexible Manufacturing System with Minimization of Tardiness Criterion. Procedia Materials Science, 5, 1492-1501. doi:10.1016/j.mspro.2014.07.336Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., & Mahmoodian, V. (2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Computers & Industrial Engineering, 86, 2-13. doi:10.1016/j.cie.2015.01.003Guo, Z., Zhang, D., Leung, S. Y. S., & Shi, L. (2016). A bi-level evolutionary optimization approach for integrated production and transportation scheduling. Applied Soft Computing, 42, 215-228. doi:10.1016/j.asoc.2016.01.052Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022Liu, Z., Guo, S., & Wang, L. (2019). Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. Journal of Cleaner Production, 211, 765-786. doi:10.1016/j.jclepro.2018.11.231Tang, D., & Dai, M. (2015). Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem. Chinese Journal of Mechanical Engineering, 28(5), 1048-1055. doi:10.3901/cjme.2015.0617.082Hao, X., Lin, L., Gen, M., & Ohno, K. (2013). Effective Estimation of Distribution Algorithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science, 20, 102-107. doi:10.1016/j.procs.2013.09.246Wang, L., Wang, S., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers & Industrial Engineering, 62(4), 917-926. doi:10.1016/j.cie.2011.12.014Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research, 36(9), 2638-2646. doi:10.1016/j.cor.2008.11.004Hauschild, M., & Pelikan, M. (2011). An introduction and survey of estimation of distribution algorithms. Swarm and Evolutionary Computation, 1(3), 111-128. doi:10.1016/j.swevo.2011.08.003Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Zhao, F., Shao, Z., Wang, J., & Zhang, C. (2015). A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems. International Journal of Production Research, 54(4), 1039-1060. doi:10.1080/00207543.2015.1041575Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 113-125. doi:10.1287/opre.40.1.113Wang, L., & Zheng, D.-Z. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 28(6), 585-596. doi:10.1016/s0305-0548(99)00137-9Dorndorf, U., & Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers & Operations Research, 22(1), 25-40. doi:10.1016/0305-0548(93)e0016-mPark, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job shop scheduling problems. Computers & Industrial Engineering, 45(4), 597-613. doi:10.1016/s0360-8352(03)00077-

    A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags

    Full text link
    [EN] The efficient use of resources is a key factor to minimize the cost while meeting time deadlines and quality requirements; this is especially important in construction projects where field operations take fluctuations of resources unproductive and costly. Resource Leveling Problems (RLP) aim to sequence the construction activities that maximize the resource consumption efficiency over time, minimizing the variability. Exact algorithms for the RLP have been proposed throughout the years to offer optimal solutions; however, these problems require a vast computational capability ( combinatorial explosion ) that makes them unpractical. Therefore, alternative heuristic and metaheuristic algorithms have been suggested in the literature to find local optimal solutions, using different libraries to benchmark optimal values; for example, the Project Scheduling Problem LIBrary for minimal lags is still open to be solved to optimality for RLP. To partially fill this gap, the authors propose a Parallel Branch and Bound algorithm for the RLP with minimal lags to solve the RLP with an acceptable computational effort. This way, this research contributes to the body of knowledge of construction project scheduling providing the optimums of 50 problems for the RLP with minimal lags for the first time, allowing future contributors to benchmark their heuristics meth-ods against exact results by obtaining the distance of their solution to the optimal values. Furthermore, for practitioners,the time required to solve this kind of problem is reasonable and practical, considering that unbalanced resources can risk the goals of the construction project.This research was supported by the FAPA program of the Universidad de Los Andes (Colombia). The authors would like to thank the research group of Construction Engineering and Management (INgeco), especially J. S. Rojas-Quintero, and the Department of Systems Engineering at the Universidad de Los Andes. The authors are also grateful to the anonymous reviewers for their valuable and constructive suggestions.Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E. (2017). A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING. 32:474-498. doi:10.1111/mice.12233S47449832Adeli, H. (2000). High-Performance Computing for Large-Scale Analysis, Optimization, and Control. Journal of Aerospace Engineering, 13(1), 1-10. doi:10.1061/(asce)0893-1321(2000)13:1(1)ADELI, H., & KAMAL, O. (2008). Parallel Structural Analysis Using Threads. Computer-Aided Civil and Infrastructure Engineering, 4(2), 133-147. doi:10.1111/j.1467-8667.1989.tb00015.xAdeli, H., & Kamal, O. (1992). Concurrent analysis of large structures—II. applications. Computers & Structures, 42(3), 425-432. doi:10.1016/0045-7949(92)90038-2Adeli, H., Kamat, M. P., Kulkarni, G., & Vanluchene, R. D. (1993). High‐Performance Computing in Structural Mechanics and Engineering. Journal of Aerospace Engineering, 6(3), 249-267. doi:10.1061/(asce)0893-1321(1993)6:3(249)Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)Adeli, H., & Kumar, S. (1995). Concurrent Structural Optimization on Massively Parallel Supercomputer. Journal of Structural Engineering, 121(11), 1588-1597. doi:10.1061/(asce)0733-9445(1995)121:11(1588)ADELI, H., & VISHNUBHOTLA, P. (2008). Parallel Processing. Computer-Aided Civil and Infrastructure Engineering, 2(3), 257-269. doi:10.1111/j.1467-8667.1987.tb00150.xAdeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)Alsayegh, H., & Hariga, M. (2012). Hybrid meta-heuristic methods for the multi-resource leveling problem with activity splitting. Automation in Construction, 27, 89-98. doi:10.1016/j.autcon.2012.04.017Anagnostopoulos, K., & Koulinas, G. (2012). Resource-Constrained Critical Path Scheduling by a GRASP-Based Hyperheuristic. Journal of Computing in Civil Engineering, 26(2), 204-213. doi:10.1061/(asce)cp.1943-5487.0000116Anagnostopoulos, K. P., & Koulinas, G. K. (2010). A simulated annealing hyperheuristic for construction resource levelling. Construction Management and Economics, 28(2), 163-175. doi:10.1080/01446190903369907Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.xBandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource leveling using non-serial dyanamic programming. European Journal of Operational Research, 78(2), 162-177. doi:10.1016/0377-2217(94)90380-8Benjaoran, V., Tabyang, W., & Sooksil, N. (2015). Precedence relationship options for the resource levelling problem using a genetic algorithm. Construction Management and Economics, 33(9), 711-723. doi:10.1080/01446193.2015.1100317Bianco, L., Caramia, M., & Giordani, S. (2016). Resource levelling in project scheduling with generalized precedence relationships and variable execution intensities. OR Spectrum, 38(2), 405-425. doi:10.1007/s00291-016-0435-1Chakroun, I., & Melab, N. (2015). Towards a heterogeneous and adaptive parallel Branch-and-Bound algorithm. Journal of Computer and System Sciences, 81(1), 72-84. doi:10.1016/j.jcss.2014.06.012Christodoulou, S. E., Ellinas, G., & Michaelidou-Kamenou, A. (2010). Minimum Moment Method for Resource Leveling Using Entropy Maximization. Journal of Construction Engineering and Management, 136(5), 518-527. doi:10.1061/(asce)co.1943-7862.0000149Clausen, J., & Perregaard, M. (1999). Annals of Operations Research, 90, 1-17. doi:10.1023/a:1018952429396Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2010). A Branch-and-Price Algorithm for Multi-mode Resource Leveling. Lecture Notes in Computer Science, 226-238. doi:10.1007/978-3-642-13193-6_20Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2015). A branch-price-and-cut algorithm for multi-mode resource leveling. European Journal of Operational Research, 245(1), 70-80. doi:10.1016/j.ejor.2015.02.043Crainic, T. G., Le Cun, B., & Roucairol, C. (s. f.). Parallel Branch-and-Bound Algorithms. Parallel Combinatorial Optimization, 1-28. doi:10.1002/9780470053928.ch1Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038Damci, A., Arditi, D., & Polat, G. (2013). Multiresource Leveling in Line-of-Balance Scheduling. Journal of Construction Engineering and Management, 139(9), 1108-1116. doi:10.1061/(asce)co.1943-7862.0000716Damci, A., Arditi, D., & Polat, G. (2015). Impacts of different objective functions on resource leveling in Line-of-Balance scheduling. KSCE Journal of Civil Engineering, 20(1), 58-67. doi:10.1007/s12205-015-0578-7De Reyck, B., & Herroelen, W. (1996). On the use of the complexity index as a measure of complexity in activity networks. European Journal of Operational Research, 91(2), 347-366. doi:10.1016/0377-2217(94)00344-0Hossein Hashemi Doulabi, S., Seifi, A., & Shariat, S. Y. (2011). Efficient Hybrid Genetic Algorithm for Resource Leveling via Activity Splitting. Journal of Construction Engineering and Management, 137(2), 137-146. doi:10.1061/(asce)co.1943-7862.0000261Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper bounds for the resource investment problem. Journal of the Operational Research Society, 52(3), 340-351. doi:10.1057/palgrave.jors.2601099Easa, S. M. (1989). Resource Leveling in Construction by Optimization. Journal of Construction Engineering and Management, 115(2), 302-316. doi:10.1061/(asce)0733-9364(1989)115:2(302)El-Rayes, K., & Jun, D. H. (2009). Optimizing Resource Leveling in Construction Projects. Journal of Construction Engineering and Management, 135(11), 1172-1180. doi:10.1061/(asce)co.1943-7862.0000097Florez, L., Castro-Lacouture, D., & Medaglia, A. L. (2013). Sustainable workforce scheduling in construction program management. Journal of the Operational Research Society, 64(8), 1169-1181. doi:10.1057/jors.2012.164Gaitanidis, A., Vassiliadis, V., Kyriklidis, C., & Dounias, G. (2016). Hybrid Evolutionary Algorithms in Resource Leveling Optimization. Proceedings of the 9th Hellenic Conference on Artificial Intelligence - SETN ’16. doi:10.1145/2903220.2903227Gather, T., Zimmermann, J., & Bartels, J.-H. (2010). Exact methods for the resource levelling problem. Journal of Scheduling, 14(6), 557-569. doi:10.1007/s10951-010-0207-8Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573-583. doi:10.1016/j.autcon.2007.10.005Hariga, M., & El-Sayegh, S. M. (2011). Cost Optimization Model for the Multiresource Leveling Problem with Allowed Activity Splitting. Journal of Construction Engineering and Management, 137(1), 56-64. doi:10.1061/(asce)co.1943-7862.0000251Harris, R. B. (1990). Packing Method for Resource Leveling (Pack). Journal of Construction Engineering and Management, 116(2), 331-350. doi:10.1061/(asce)0733-9364(1990)116:2(331)Hegazy, T. (1999). Optimization of Resource Allocation and Leveling Using Genetic Algorithms. Journal of Construction Engineering and Management, 125(3), 167-175. doi:10.1061/(asce)0733-9364(1999)125:3(167)Heon Jun, D., & El-Rayes, K. (2011). Multiobjective Optimization of Resource Leveling and Allocation during Construction Scheduling. Journal of Construction Engineering and Management, 137(12), 1080-1088. doi:10.1061/(asce)co.1943-7862.0000368Hiyassat, M. A. S. (2000). Modification of Minimum Moment Approach in Resource Leveling. Journal of Construction Engineering and Management, 126(4), 278-284. doi:10.1061/(asce)0733-9364(2000)126:4(278)Hiyassat, M. A. S. (2001). Applying Modified Minimum Moment Method to Multiple Resource Leveling. Journal of Construction Engineering and Management, 127(3), 192-198. doi:10.1061/(asce)0733-9364(2001)127:3(192)Ismail, M. M., el-raoof, O. abd, & Abd EL-Wahed, W. F. (2014). A Parallel Branch and Bound Algorithm for Solving Large Scale Integer Programming Problems. Applied Mathematics & Information Sciences, 8(4), 1691-1698. doi:10.12785/amis/080425Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1Koulinas, G. K., & Anagnostopoulos, K. P. (2013). A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities. Automation in Construction, 31, 169-175. doi:10.1016/j.autcon.2012.11.002Lai, T.-H., & Sahni, S. (1984). Anomalies in parallel branch-and-bound algorithms. Communications of the ACM, 27(6), 594-602. doi:10.1145/358080.358103Leu, S.-S., Yang, C.-H., & Huang, J.-C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27-41. doi:10.1016/s0926-5805(99)00011-4Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling Policies for the Stochastic Resource Leveling Problem. Journal of Construction Engineering and Management, 141(2), 04014072. doi:10.1061/(asce)co.1943-7862.0000936Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073Menesi, W., & Hegazy, T. (2015). Multimode Resource-Constrained Scheduling and Leveling for Practical-Size Projects. Journal of Management in Engineering, 31(6), 04014092. doi:10.1061/(asce)me.1943-5479.0000338Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources. doi:10.1007/978-3-540-24800-2Neumann, K., & Zimmermann, J. (1999). Methods for Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent Time Windows. International Series in Operations Research & Management Science, 261-287. doi:10.1007/978-1-4615-5533-9_12Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425-443. doi:10.1016/s0377-2217(99)00498-1Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381. doi:10.1007/pl00013357Perregaard, M., & Clausen, J. (1998). Annals of Operations Research, 83, 137-160. doi:10.1023/a:1018903912673Ponz-Tienda, J. L., Pellicer, E., Benlloch-Marco, J., & Andrés-Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering, 30(11), 872-891. doi:10.1111/mice.12166Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach. Management Science, 16(1), 93-108. doi:10.1287/mnsc.16.1.93Ranjbar, M. (2013). A path-relinking metaheuristic for the resource levelling problem. Journal of the Operational Research Society, 64(7), 1071-1078. doi:10.1057/jors.2012.119Rieck, J., & Zimmermann, J. (2014). Exact Methods for Resource Leveling Problems. Handbook on Project Management and Scheduling Vol.1, 361-387. doi:10.1007/978-3-319-05443-8_17Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221(1), 27-37. doi:10.1016/j.ejor.2012.03.003Saleh, A., & Adeli, H. (1994). Microtasking, Macrotasking, and Autotasking for Structural Optimization. Journal of Aerospace Engineering, 7(2), 156-174. doi:10.1061/(asce)0893-1321(1994)7:2(156)Saleh, A., & Adeli, H. (1994). Parallel Algorithms for Integrated Structural/Control Optimization. Journal of Aerospace Engineering, 7(3), 297-314. doi:10.1061/(asce)0893-1321(1994)7:3(297)Son, J., & Mattila, K. G. (2004). Binary Resource Leveling Model: Activity Splitting Allowed. Journal of Construction Engineering and Management, 130(6), 887-894. doi:10.1061/(asce)0733-9364(2004)130:6(887)Son, J., & Skibniewski, M. J. (1999). Multiheuristic Approach for Resource Leveling Problem in Construction Engineering: Hybrid Approach. Journal of Construction Engineering and Management, 125(1), 23-31. doi:10.1061/(asce)0733-9364(1999)125:1(23)Tang, Y., Liu, R., & Sun, Q. (2014). Two-Stage Scheduling Model for Resource Leveling of Linear Projects. Journal of Construction Engineering and Management, 140(7), 04014022. doi:10.1061/(asce)co.1943-7862.0000862Wah, Guo-jie Li, & Chee Fen Yu. (1985). Multiprocessing of Combinatorial Search Problems. Computer, 18(6), 93-108. doi:10.1109/mc.1985.1662926Yeniocak , H. 2013 An efficient branch and bound algorithm for the resource leveling problem Ph.D. dissertation, Middle East Technical University, School of Natural and Applied SciencesYounis, M. A., & Saad, B. (1996). Optimal resource leveling of multi-resource projects. Computers & Industrial Engineering, 31(1-2), 1-4. doi:10.1016/0360-8352(96)00116-

    Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems

    Full text link
    [EN] Industrial production scheduling problems are challenges that researchers have been trying to solve for decades. Many practical scheduling problems such as the hybrid flowshop are ATP-hard. As a result, researchers resort to metaheuristics to obtain effective and efficient solutions. The traditional design process of metaheuristics is mainly manual, often metaphor-based, biased by previous experience and prone to producing overly tailored methods that only work well on the tested problems and objectives. In this paper, we use an Automatic Algorithm Design (AAD) methodology to eliminate these limitations. AAD is capable of composing algorithms from components with minimal human intervention. We test the proposed MD for three different optimization objectives in the hybrid flowshop. Comprehensive computational and statistical testing demonstrates that automatically designed algorithms outperform specifically tailored state-of-the-art methods for the tested objectives in most cases.Pedro Alfaro-Fernandez and Ruben Ruiz are partially supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization" (No. RTI2018-094940-B-I00) financed with FEDER funds and under grants BES-2013-064858 and EEBB-I-15-10089. This work was supported by the COMEX project (P7/36) within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office. Thomas Stiitzle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director.Alfaro-Fernandez, P.; Ruiz García, R.; Pagnozzi, F.; Stützle, T. (2020). Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems. European Journal of Operational Research. 282(3):835-845. https://doi.org/10.1016/j.ejor.2019.10.004S8358452823Bożejko, W., Gnatowski, A., Niżyński, T., Affenzeller, M., & Beham, A. (2018). Local Optima Networks in Solving Algorithm Selection Problem for TSP. Advances in Intelligent Systems and Computing, 83-93. doi:10.1007/978-3-319-91446-6_9Bożejko, W., Pempera, J., & Smutnicki, C. (2013). Parallel tabu search algorithm for the hybrid flow shop problem. Computers & Industrial Engineering, 65(3), 466-474. doi:10.1016/j.cie.2013.04.007Burke, E. K., Hyde, M. R., & Kendall, G. (2012). Grammatical Evolution of Local Search Heuristics. IEEE Transactions on Evolutionary Computation, 16(3), 406-417. doi:10.1109/tevc.2011.2160401Cahon, S., Melab, N., & Talbi, E.-G. (2004). ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics, 10(3), 357-380. doi:10.1023/b:heur.0000026900.92269.ecCarlier, J., & Neron, E. (2000). An Exact Method for Solving the Multi-Processor Flow-Shop. RAIRO - Operations Research, 34(1), 1-25. doi:10.1051/ro:2000103Chung, T.-P., & Liao, C.-J. (2013). An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem. Applied Soft Computing, 13(8), 3729-3736. doi:10.1016/j.asoc.2013.03.006Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing, 148, 248-259. doi:10.1016/j.neucom.2013.07.056Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. doi:10.1016/j.asoc.2015.02.006Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236. doi:10.1016/j.cor.2010.10.008Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Computers & Operations Research, 81, 160-166. doi:10.1016/j.cor.2016.12.021Gupta, J. N. D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39(4), 359-364. doi:10.1057/jors.1988.63Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Operational Research, 169(3), 699-711. doi:10.1016/j.ejor.2005.02.001Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. doi:10.1016/j.amc.2011.02.108Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stuetzle, T. (2009). ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research, 36, 267-306. doi:10.1613/jair.2861Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. doi:10.1002/nav.3800010110Khalouli, S., Ghedjati, F., & Hamzaoui, A. (2010). A meta-heuristic approach to solve a JIT scheduling problem in hybrid flow shop. Engineering Applications of Artificial Intelligence, 23(5), 765-771. doi:10.1016/j.engappai.2010.01.008KhudaBukhsh, A. R., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2016). SATenstein: Automatically building local search SAT solvers from components. Artificial Intelligence, 232, 20-42. doi:10.1016/j.artint.2015.11.002Li, J., Pan, Q., & Wang, F. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied Soft Computing, 24, 63-77. doi:10.1016/j.asoc.2014.07.005Liao, C.-J., Tjandradjaja, E., & Chung, T.-P. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing, 12(6), 1755-1764. doi:10.1016/j.asoc.2012.01.011Lopez-Ibanez, M., & Stutzle, T. (2012). The Automatic Design of Multiobjective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 16(6), 861-875. doi:10.1109/tevc.2011.2182651López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58. doi:10.1016/j.orp.2016.09.002Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Transactions on Evolutionary Computation, 18(2), 301-305. doi:10.1109/tevc.2013.2240304Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101. doi:10.1016/j.asoc.2014.02.005Marichelvam, M. K., Prabaharan, T., Yang, X. S., & Geetha, M. (2013). Solving hybrid flow shop scheduling problems using bat algorithm. International Journal of Logistics Economics and Globalisation, 5(1), 15. doi:10.1504/ijleg.2013.054428Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., & Stützle, T. (2014). Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers & Operations Research, 51, 190-199. doi:10.1016/j.cor.2014.05.020Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9Pan, Q.-K., & Dong, Y. (2014). An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Information Sciences, 277, 643-655. doi:10.1016/j.ins.2014.02.152Pan, Q.-K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80, 50-60. doi:10.1016/j.cor.2016.11.022Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega, 45, 42-56. doi:10.1016/j.omega.2013.12.004Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129-138. doi:10.1016/s0377-2217(96)00273-1Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18. doi:10.1016/j.ejor.2009.09.024Sörensen, K. (2013). Metaheuristics-the metaphor exposed. International Transactions in Operational Research, 22(1), 3-18. doi:10.1111/itor.12001Vignier, A., Billaut, J.-C., & Proust, C. (1999). Les problèmes d’ordonnancement de type flow-shop hybride : état de l’art. RAIRO - Operations Research, 33(2), 117-183. doi:10.1051/ro:1999108Wang, S., Wang, L., Liu, M., & Xu, Y. (2013). An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2043-2056. doi:10.1007/s00170-013-4819-yXu, Y., Wang, L., Wang, S., & Liu, M. (2013). An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization, 45(12), 1409-1430. doi:10.1080/0305215x.2012.73778

    Flow shop rescheduling under different types of disruption

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 2013, available online:http://www.tandfonline.com/10.1080/00207543.2012.666856Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimise the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand, and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.The authors would like to thank the anonymous referees for their careful and detailed comments that helped to improve the paper considerably. This work is partially financed by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R + D program "Ayudas dirigidas a Institutos tecnologicos de la Red IMPIVA" during the year 2011, with project number IMDEEA/2011/142.Katragjini Prifti, K.; Vallada Regalado, E.; Ruiz García, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research. 51(3):780-797. https://doi.org/10.1080/00207543.2012.666856S780797513Abumaizar, R. J., & Svestka, J. A. (1997). Rescheduling job shops under random disruptions. International Journal of Production Research, 35(7), 2065-2082. doi:10.1080/002075497195074Adiri, I., Frostig, E., & Kan, A. H. G. R. (1991). Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs. Naval Research Logistics, 38(2), 261-271. doi:10.1002/1520-6750(199104)38:23.0.co;2-iAkturk, M. S., & Gorgulu, E. (1999). Match-up scheduling under a machine breakdown. European Journal of Operational Research, 112(1), 81-97. doi:10.1016/s0377-2217(97)00396-2Allahverdi, A. (1996). Two-machine proportionate flowshop scheduling with breakdowns to minimize maximum lateness. Computers & Operations Research, 23(10), 909-916. doi:10.1016/0305-0548(96)00012-3Arnaout, J. P., & Rabadi, G. (2008). Rescheduling of unrelated parallel machines under machine breakdowns. International Journal of Applied Management Science, 1(1), 75. doi:10.1504/ijams.2008.020040Artigues, C., Billaut, J.-C., & Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2), 314-328. doi:10.1016/j.ejor.2004.04.004Azizoglu, M., & Alagöz, O. (2005). Parallel-machine rescheduling with machine disruptions. IIE Transactions, 37(12), 1113-1118. doi:10.1080/07408170500288133Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup Scheduling with Multiple Resources, Release Dates and Disruptions. Operations Research, 39(3), 470-483. doi:10.1287/opre.39.3.470Caricato, P., & Grieco, A. (2008). An online approach to dynamic rescheduling for production planning applications. International Journal of Production Research, 46(16), 4597-4617. doi:10.1080/00207540601136225CHURCH, L. K., & UZSOY, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153-163. doi:10.1080/09511929208944524Cowling, P., & Johansson, M. (2002). Using real time information for effective dynamic scheduling. European Journal of Operational Research, 139(2), 230-244. doi:10.1016/s0377-2217(01)00355-1Curry, J., & Peters *, B. (2005). Rescheduling parallel machines with stepwise increasing tardiness and machine assignment stability objectives. International Journal of Production Research, 43(15), 3231-3246. doi:10.1080/00207540500103953DUTTA, A. (1990). Reacting to Scheduling Exceptions in FMS Environments. IIE Transactions, 22(4), 300-314. doi:10.1080/07408179008964185Ghezail, F., Pierreval, H., & Hajri-Gabouj, S. (2010). Analysis of robustness in proactive scheduling: A graphical approach. Computers & Industrial Engineering, 58(2), 193-198. doi:10.1016/j.cie.2009.03.004Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures for scheduling: single-machine environment. IIE Transactions, 40(1), 66-83. doi:10.1080/07408170701283198Hall, N. G., & Potts, C. N. (2004). Rescheduling for New Orders. Operations Research, 52(3), 440-453. doi:10.1287/opre.1030.0101Herrmann, J. W., Lee, C.-Y., & Snowdon, J. L. (1993). A Classification of Static Scheduling Problems. Complexity in Numerical Optimization, 203-253. doi:10.1142/9789814354363_0011Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002Hozak, K., & Hill, J. A. (2009). Issues and opportunities regarding replanning and rescheduling frequencies. International Journal of Production Research, 47(18), 4955-4970. doi:10.1080/00207540802047106Huaccho Huatuco, L., Efstathiou, J., Calinescu, A., Sivadasan, S., & Kariuki, S. (2009). Comparing the impact of different rescheduling strategies on the entropic-related complexity of manufacturing systems. International Journal of Production Research, 47(15), 4305-4325. doi:10.1080/00207540701871036Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(3), 275-288. doi:10.1109/tevc.2003.810067King, J. R. (1976). The theory-practice gap in job-shop scheduling. Production Engineer, 55(3), 137. doi:10.1049/tpe.1976.0044Kopanos, G. M., Capón-García, E., Espuña,, A., & Puigjaner, L. (2008). Costs for Rescheduling Actions: A Critical Issue for Reducing the Gap between Scheduling Theory and Practice. Industrial & Engineering Chemistry Research, 47(22), 8785-8795. doi:10.1021/ie8005676Lee, C.-Y., Leung, J. Y.-T., & Yu, G. (2006). Two Machine Scheduling under Disruptions with Transportation Considerations. Journal of Scheduling, 9(1), 35-48. doi:10.1007/s10951-006-5592-7Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4-5), 715-727. doi:10.1016/j.compchemeng.2007.03.001Liao, C. J., & Chen, W. J. (2004). Scheduling under machine breakdown in a continuous process industry. Computers & Operations Research, 31(3), 415-428. doi:10.1016/s0305-0548(02)00224-1Mehta, S. V. (1999). Predictable scheduling of a single machine subject to breakdowns. International Journal of Computer Integrated Manufacturing, 12(1), 15-38. doi:10.1080/095119299130443MUHLEMANN, A. P., LOCKETT, A. G., & FARN, C.-K. (1982). Job shop scheduling heuristics and frequency of scheduling. International Journal of Production Research, 20(2), 227-241. doi:10.1080/00207548208947763Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9O’Donovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable scheduling of a single machine with breakdowns and sensitive jobs. International Journal of Production Research, 37(18), 4217-4233. doi:10.1080/002075499189745Özlen, M., & Azizoğlu, M. (2009). Generating all efficient solutions of a rescheduling problem on unrelated parallel machines. International Journal of Production Research, 47(19), 5245-5270. doi:10.1080/00207540802043998Pfeiffer, A., Kádár, B., & Monostori, L. (2007). Stability-oriented evaluation of rescheduling strategies, by using simulation. Computers in Industry, 58(7), 630-643. doi:10.1016/j.compind.2007.05.009Pierreval, H., & Durieux-Paris, S. (2007). Robust simulation with a base environmental scenario. European Journal of Operational Research, 182(2), 783-793. doi:10.1016/j.ejor.2006.07.045Damodaran, P., Hirani, N. S., & Gallego, M. C. V. (2009). Scheduling identical parallel batch processing machines to minimise makespan using genetic algorithms. European J. of Industrial Engineering, 3(2), 187. doi:10.1504/ejie.2009.023605Qi, X., Bard, J. F., & Yu, G. (2006). Disruption management for machine scheduling: The case of SPT schedules. International Journal of Production Economics, 103(1), 166-184. doi:10.1016/j.ijpe.2005.05.021Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, 46(1), 1-15. doi:10.1016/j.cie.2003.09.007Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Sabuncuoglu, I., & Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138-157. doi:10.1080/09511920802209033Sabuncuoglu, I., & Kizilisik, O. B. (2003). Reactive scheduling in a dynamic and stochastic FMS environment. International Journal of Production Research, 41(17), 4211-4231. doi:10.1080/0020754031000149202Salveson, M. E. (1952). On a Quantitative Method in Production Planning and Scheduling. Econometrica, 20(4), 554. doi:10.2307/1907643Samarghandi, H., & ElMekkawy, T. Y. (2011). An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. European J. of Industrial Engineering, 5(2), 111. doi:10.1504/ejie.2011.039869Subramaniam *, V., Raheja, A. S., & Rama Bhupal Reddy, K. (2005). Reactive repair tool for job shop schedules. International Journal of Production Research, 43(1), 1-23. doi:10.1080/0020754042000270412Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65-74. doi:10.1016/0377-2217(90)90090-xTaillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. doi:10.1016/0377-2217(93)90182-mValente, J. M. S., & Schaller, J. E. (2010). Improved heuristics for the single machine scheduling problem with linear early and quadratic tardy penalties. European J. of Industrial Engineering, 4(1), 99. doi:10.1504/ejie.2010.029572Vallada, E., & Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem☆. Omega, 38(1-2), 57-67. doi:10.1016/j.omega.2009.04.002Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Predicting the performance of rescheduling strategies for parallel machine systems. Journal of Manufacturing Systems, 19(4), 256-266. doi:10.1016/s0278-6125(01)80005-4Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Journal of Scheduling, 6(1), 39-62. doi:10.1023/a:1022235519958Yang, J., & Yu, G. (2002). Journal of Combinatorial Optimization, 6(1), 17-33. doi:10.1023/a:1013333232691Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999-7027. doi:10.1080/0020754080240063

    Geometric and harmonic means based priority dispatching rules for single machine scheduling problems

    Full text link
    [EN] This work proposes two new prority dispatching rules (PDRs) for solving single machine scheduling problems. These rules are based on the geometric mean (GM) and harmonic mean (HM) of the processing time (PT) and the due date (DD) and they are referred to as GMPD and HMPD respectively. Performance of the proposed PDRs is evaluated on the basis of five measures/criteria i.e. Total Flow Time (TFT), Total Lateness (TL), Number of Late Jobs (TNL), Total Earliness (TE) and Number of Early Parts (TNE). It is found that GMPD performs better than other PDRs in achieving optimal values of multiple performance measures. Further, effect of variation in the weight assigned to PT and DD on the combined performance of TFT and TL is also examined which reveals that for deriving optimal values of TFT and TL, weighted harmonic mean (WHMPD) rule with a weight of 0.105 outperforms other PDRs. The weighted geometric mean (WGMPD) rule with a weight of 0.37 is found to be the next after WHMPD followed by the weighted PDT i.e. WPDT rule with a weight of 0.76.Ahmad, S.; Khan, ZA.; Ali, M.; Asjad, M. (2021). Geometric and harmonic means based priority dispatching rules for single machine scheduling problems. International Journal of Production Management and Engineering. 9(2):93-102. https://doi.org/10.4995/ijpme.2021.15217OJS9310292Baharom, M. Z., Nazdah, W., &Hussin, W. (2015). Scheduling Analysis for Job Sequencing in Veneer Lamination Line. Journal of Industrial and Intelligent Information, 3(3). https://doi.org/10.12720/jiii.3.3.181-185Chan, F. T. S., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). Analysis of dynamic dispatching rules for a flexible manufacturing system. Journal of Materials Processing Technology, 138(1), 325-331. https://doi.org/10.1016/S0924-0136(03)00093-1Cheng, T. C. E., &Kahlbacher, H. G. (1993). Single-machine scheduling to minimize earliness and number of tardy jobs. Journal of Optimization Theory and Applications, 77(3), 563-573. https://doi.org/10.1007/BF00940450da Silva, N. C. O., Scarpin, C. T., Pécora, J. E., & Ruiz, A. (2019). Online single machine scheduling with setup times depending on the jobs sequence. Computers & Industrial Engineering, 129, 251-258. https://doi.org/10.1016/j.cie.2019.01.038Doh, H.H., Yu, J.M., Kim, J.S., Lee, D.H., & Nam, S.H. (2013). A priority scheduling approach for flexible job shops with multiple process plans. International Journal of Production Research, 51(12), 3748-3764. https://doi.org/10.1080/00207543.2013.765074Dominic, Panneer D. D., Kaliyamoorthy, S., & Kumar, M. S. (2004). Efficient dispatching rules for dynamic job shop scheduling. The International Journal of Advanced Manufacturing Technology, 24(1), 70-75.Ðurasević, M., &Jakobović, D. (2018). A survey of dispatching rules for the dynamic unrelated machines environment. Expert Systems with Applications, 113, 555-569. https://doi.org/10.1016/j.eswa.2018.06.053Forrester, P. (2006). Operations Management: An Integrated Approach. International Journal of Operations & Production Management.Geiger, C. D., &Uzsoy, R. (2008). Learning effective dispatching rules for batch processor scheduling. International Journal of Production Research, 46(6), 1431-1454. https://doi.org/10.1080/00207540600993360Hamidi, M. (2016). Two new sequencing rules for the non-preemptive single machine scheduling problem. The Journal of Business Inquiry, 15(2), 116-127.Holthaus, O., & Rajendran, C. (1997). New dispatching rules for scheduling in a job shop-An experimental study. The International Journal of Advanced Manufacturing Technology, 13(2), 148-153. https://doi.org/10.1007/BF01225761Hussain, M. S., & Ali, M. (2019). A Multi-agent Based Dynamic Scheduling of Flexible Manufacturing Systems. Global Journal of Flexible Systems Management, 20(3), 267-290. https://doi.org/10.1007/s40171-019-00214-9Jayamohan, M. S., & Rajendran, C. (2000). New dispatching rules for shop scheduling: A step forward. International Journal of Production Research, 38(3), 563-586. https://doi.org/10.1080/002075400189301Kadipasaoglu, S. N., Xiang, W., &Khumawala, B. M. (1997). A comparison of sequencing rules in static and dynamic hybrid flow systems. International Journal of Production Research, 35(5), 1359-1384. https://doi.org/10.1080/002075497195371Kanet, J. J., & Li, X. (2004). A Weighted Modified Due Date Rule for Sequencing to Minimize Weighted Tardiness. Journal of Scheduling, 7(4), 261-276. https://doi.org/10.1023/B:JOSH.0000031421.64487.95Lee, D.K., Shin, J.H., & Lee, D.H. (2020). Operations scheduling for an advanced flexible manufacturing system with multi-fixturing pallets. Computers & Industrial Engineering, 144, 106496. https://doi.org/10.1016/j.cie.2020.106496Lu, C.C., Lin, S.W., & Ying, K.C. (2012). Robust scheduling on a single machine to minimize total flow time. Computers & Operations Research, 39(7), 1682-1691. https://doi.org/10.1016/j.cor.2011.10.003Krishnan, M., Chinnusamy, T. R., & Karthikeyan, T. (2012). Performance Study of Flexible Manufacturing System Scheduling Using Dispatching Rules in Dynamic Environment. Procedia Engineering, 38, 2793-2798. https://doi.org/10.1016/j.proeng.2012.06.327Munir, E. U., Li, J., Shi, S., Zou, Z., & Yang, D. (2008). MaxStd: A task scheduling heuristic for heterogeneous computing environment. Information Technology Journal, 7(4), 679-683. https://doi.org/10.3923/itj.2008.679.683Oyetunji, E. O. (2009). Some common performance measures in scheduling problems. Research Journal of Applied Sciences, Engineering and Technology, 1(2), 6-9.Pinedo, M. L. (2009). Planning and Scheduling in Manufacturing and Services (2nd ed.). Springer-Verlag. https://doi.org/10.1007/978-1-4419-0910-7Prakash, A., Chan, F. T. S., & Deshmukh, S. G. (2011). FMS scheduling with knowledge based genetic algorithm approach. Expert Systems with Applications, 38(4), 3161-3171. https://doi.org/10.1016/j.eswa.2010.09.002Rafsanjani, M. K., &Bardsiri, A. K. (2012). A New Heuristic Approach for Scheduling Independent Tasks on Heterogeneous Computing Systems. International Journal of Machine Learning and Computing, 371-376. https://doi.org/10.7763/IJMLC.2012.V2.147Tyagi, N., Tripathi, R. P., &Chandramouli, A. B. (2016). Single Machine Scheduling Model with Total Tardiness Problem. Indian Journal of Science and Technology, 9(37). https://doi.org/10.17485/ijst/2016/v9i37/97527Vinod, V., & Sridharan, R. (2008). Dynamic job-shop scheduling with sequence-dependent setup times: Simulation modeling and analysis. The International Journal of Advanced Manufacturing Technology, 36(3), 355-372. https://doi.org/10.1007/s00170-006-0836-4Waikar, A. M., Sarker, B. R., & Lal, A. M. (1995). A comparative study of some priority dispatching rules under different shop loads. Production Planning & Control, 6(4), 301-310. https://doi.org/10.1080/0953728950893028

    Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism

    Full text link
    [EN] With the development of the market globalisation trend and increasing customer orientation, many uncertainties have entered into the manufacturing context. To create an agile response to the emergence of and change in conditions, this article presents a dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. The dynamic re-scheduling function is the result of cooperation among several autonomous bio-inspired manufacturing cells with computing power and optimisation capabilities. The dynamic re-scheduling model is designed based on hormone regulation principles to agilely respond to the frequent occurrence of unexpected disturbances at the shop floor level. The cooperation mechanisms of the dynamic re-scheduling model are described in detail, and a test bed is set up to simulate and verify the dynamic re-scheduling approach. The results verify that the proposed method is able to improve the performances and enhance the stability of a manufacturing systemThis research was sponsored by the National Natural Science Foundation of China (NSFC) under Grant No. 51175262 and No. 61105114 and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK20121011. This research was also sponsored by the CASES project supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under grant agreement No. 294931Zheng, K.; Tang, D.; Giret Boggino, AS.; Gu, W.; Wu, X. (2015). Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 229(S1):121-134. https://doi.org/10.1177/0954405414558699S121134229S1Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. doi:10.1016/j.compchemeng.2009.06.007Yandra, & Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous population for solving flowshop scheduling problems. International Journal of Computer Integrated Manufacturing, 20(5), 465-477. doi:10.1080/09511920601160288Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114-123. doi:10.1016/j.cirpj.2009.10.001Renna, P. (2011). Multi-agent based scheduling in manufacturing cells in a dynamic environment. International Journal of Production Research, 49(5), 1285-1301. doi:10.1080/00207543.2010.518736Qin, L., & Kan, S. (2013). Production Dynamic Scheduling Method Based on Improved Contract Net of Multi-agent. Advances in Intelligent Systems and Computing, 929-936. doi:10.1007/978-3-642-31656-2_128Iwamura, K., Mayumi, N., Tanimizu, Y., & Sugimura, N. (2010). A Study on Real-time Scheduling for Holonic Manufacturing Systems - Application of Reinforcement Learning -. Service Robotics and Mechatronics, 201-204. doi:10.1007/978-1-84882-694-6_35Jana, T. K., Bairagi, B., Paul, S., Sarkar, B., & Saha, J. (2013). Dynamic schedule execution in an agent based holonic manufacturing system. Journal of Manufacturing Systems, 32(4), 801-816. doi:10.1016/j.jmsy.2013.07.004Dan, Z., Cai, L., & Zheng, L. (2009). Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Science and Technology, 14(3), 407-412. doi:10.1016/s1007-0214(09)70058-6Hsieh, F.-S. (2009). Developing cooperation mechanism for multi-agent systems with Petri nets. Engineering Applications of Artificial Intelligence, 22(4-5), 616-627. doi:10.1016/j.engappai.2009.02.006Tang, D., Gu, W., Wang, L., & Zheng, K. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255-1268. doi:10.1080/00207543.2010.518734Keenan, D. M., Licinio, J., & Veldhuis, J. D. (2001). A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. Proceedings of the National Academy of Sciences, 98(7), 4028-4033. doi:10.1073/pnas.051624198Farhy, L. S. (2004). Modeling of Oscillations in Endocrine Networks with Feedback. Numerical Computer Methods, Part E, 54-81. doi:10.1016/s0076-6879(04)84005-9Cavalieri, S., Macchi, M., & Valckenaers, P. (2003). Journal of Intelligent Manufacturing, 14(1), 43-58. doi:10.1023/a:1022287212706Leitão, P., & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing, 24(5), 625-634. doi:10.1016/j.rcim.2007.09.005Bal, M., & Hashemipour, M. (2009). Virtual factory approach for implementation of holonic control in industrial applications: A case study in die-casting industry. Robotics and Computer-Integrated Manufacturing, 25(3), 570-581. doi:10.1016/j.rcim.2008.03.020Leitao P. An agile and adaptive holonic architecture for manufacturing control. PhD Thesis, University of Porto, Porto, 2004

    Mode-Based versus Activity-Based Search for a Nonredundant Resolution of the Multimode Resource-Constrained Project Scheduling Problem

    Get PDF
    [EN] This paper addresses an energy-based extension of the Multimode Resource-Constrained Project Scheduling Problem (MRCPSP) called MRCPSP-ENERGY. This extension considers the energy consumption as an additional resource that leads to different execution modes (and durations) of the activities. Consequently, different schedules can be obtained. The objective is to maximize the efficiency of the project, which takes into account the minimization of both makespan and energy consumption. This is a well-known NP-hard problem, such that the application of metaheuristic techniques is necessary to address real-size problems in a reasonable time. This paper shows that the Activity List representation, commonly used in metaheuristics, can lead to obtaining many redundant solutions, that is, solutions that have different representations but are in fact the same. This is a serious disadvantage for a search procedure. We propose a genetic algorithm(GA) for solving the MRCPSP-ENERGY, trying to avoid redundant solutions by focusing the search on the execution modes, by using the Mode List representation. The proposed GA is evaluated on different instances of the PSPLIB-ENERGY library and compared to the results obtained by both exact methods and approximate methods reported in the literature. This library is an extension of the well-known PSPLIB library, which contains MRCPSP-ENERGY test cases.This paper has been partially supported by the Spanish Research Projects TIN2013-46511-C2-1-P and TIN2016-80856-R.Morillo-Torres, D.; Barber, F.; Salido, MA. (2017). Mode-Based versus Activity-Based Search for a Nonredundant Resolution of the Multimode Resource-Constrained Project Scheduling Problem. Mathematical Problems in Engineering. 2017:1-15. https://doi.org/10.1155/2017/4627856S1152017Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013Hartmann, S., & Sprecher, A. (1996). A note on «hierarchical models for multi-project planning and scheduling». European Journal of Operational Research, 94(2), 377-383. doi:10.1016/0377-2217(95)00158-1Christofides, N., Alvarez-Valdes, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262-273. doi:10.1016/0377-2217(87)90240-2Zhu, G., Bard, J. F., & Yu, G. (2006). A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem. INFORMS Journal on Computing, 18(3), 377-390. doi:10.1287/ijoc.1040.0121Kolisch, R., & Hartmann, S. (1999). Heuristic Algorithms for the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis. International Series in Operations Research & Management Science, 147-178. doi:10.1007/978-1-4615-5533-9_7Józefowska, J., Mika, M., Różycki, R., Waligóra, G., & Węglarz, J. (2001). Annals of Operations Research, 102(1/4), 137-155. doi:10.1023/a:1010954031930Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149(2), 268-281. doi:10.1016/s0377-2217(02)00761-0Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms. Journal of the Operational Research Society, 54(6), 614-626. doi:10.1057/palgrave.jors.2601563Zhang, H., Tam, C. M., & Li, H. (2006). Multimode Project Scheduling Based on Particle Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 21(2), 93-103. doi:10.1111/j.1467-8667.2005.00420.xJarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308. doi:10.1016/j.amc.2007.04.096Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431-438. doi:10.1016/j.autcon.2013.05.030Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302-316. doi:10.1016/j.ijpe.2008.11.002Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418. doi:10.1016/j.ejor.2009.03.034Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes – A survey. European Journal of Operational Research, 208(3), 177-205. doi:10.1016/j.ejor.2010.03.037Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37. doi:10.1016/j.ejor.2005.01.065Debels, D., De Reyck, B., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research, 169(2), 638-653. doi:10.1016/j.ejor.2004.08.020Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Systems with Applications, 39(4), 3983-3994. doi:10.1016/j.eswa.2011.09.062Drexl, A. (1991). Scheduling of Project Networks by Job Assignment. Management Science, 37(12), 1590-1602. doi:10.1287/mnsc.37.12.1590BOCTOR, F. F. (1996). Resource-constrained project scheduling by simulated annealing. International Journal of Production Research, 34(8), 2335-2351. doi:10.1080/0020754960890502

    The distributed assembly permutation flowshop scheduling problem

    Full text link
    Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to model and study complex supply chains. This problem is a generalisation of the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first stage of the DAPFSP is composed of f identical production factories. Each one is a flowshop that produces jobs to be assembled into final products in a second assembly stage. The objective is to minimise the makespan. We present first a Mixed Integer Linear Programming model (MILP). Three constructive algorithms are proposed. Finally, a Variable Neighbourhood Descent (VND) algorithm has been designed and tested by a comprehensive ANOVA statistical analysis. The results show that the VND algorithm offers good performance to solve this scheduling problem.Ruben Ruiz is partially supported by the Spanish Ministry of Science and Innovation, under the project 'RESULT - Realistic Extended Scheduling Using Light Techniques' with reference DPI2012-36243-C02-01. Carlos Andres-Romano is partially supported by the Spanish Ministry of Science and Innovation, under the project 'INSAMBLE' - Scheduling at assembly/disassembly synchronised supply chains with reference DPI2011-27633.Hatami, S.; Ruiz García, R.; Andrés Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal of Production Research. 51(17):5292-5308. https://doi.org/10.1080/00207543.2013.807955S529253085117Basso, D., Chiarandini, M., & Salmaso, L. (2007). Synchronized permutation tests in replicated designs. Journal of Statistical Planning and Inference, 137(8), 2564-2578. doi:10.1016/j.jspi.2006.04.016Biggs, D., De Ville, B., & Suen, E. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1), 49-62. doi:10.1080/02664769100000005Chan, F. T. S., Chung, S. H., Chan, L. Y., Finke, G., & Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6), 493-504. doi:10.1016/j.rcim.2005.11.005Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2006). Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems. International Journal of Production Research, 44(3), 523-543. doi:10.1080/00207540500319229Liao, C.-J., & Liao, L.-M. (2008). Improved MILP models for two-machine flowshop with batch processing machines. Mathematical and Computer Modelling, 48(7-8), 1254-1264. doi:10.1016/j.mcm.2008.01.001Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. doi:10.1016/s0305-0483(03)00047-1Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International Journal of Computational Intelligence Systems, 4(4), 497-508. doi:10.1080/18756891.2011.9727808Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449-467. doi:10.1016/s0377-2217(00)00100-4Hariri, A. M. A., & Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of Operational Research, 103(3), 547-556. doi:10.1016/s0377-2217(96)00312-8Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2002). Web-based Multi-functional Scheduling System for a Distributed Manufacturing Environment. Concurrent Engineering, 10(1), 27-39. doi:10.1177/1063293x02010001054Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). Journal of Intelligent Manufacturing, 14(3/4), 351-362. doi:10.1023/a:1024653810491Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems. Computers & Industrial Engineering, 53(2), 313-320. doi:10.1016/j.cie.2007.06.024Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29(2), 119. doi:10.2307/2986296Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616-625. doi:10.1287/mnsc.39.5.616Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415-434. doi:10.1080/01621459.1963.10500855Pan, Q.-K., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research, 222(1), 31-43. doi:10.1016/j.ejor.2012.04.034Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld, C. M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research, 43(2), 346-355. doi:10.1287/opre.43.2.346Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5-8), 777-794. doi:10.1007/s00170-011-3318-2Stafford, E. F., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 56(1), 88-101. doi:10.1057/palgrave.jors.2601805Tozkapan, A., Kırca, Ö., & Chung, C.-S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309-320. doi:10.1016/s0305-0548(01)00098-3Tseng, F. T., & Stafford, E. F. (2008). New MILP models for the permutation flowshop problem. Journal of the Operational Research Society, 59(10), 1373-1386. doi:10.1057/palgrave.jors.260245

    Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems

    Full text link
    [EN] Many real-world problems are known as planning and scheduling problems, where resources must be allocated so as to optimize overall performance objectives. The traditional scheduling models consider performance indicators such as processing time, cost, and quality as optimization objectives. However, most of them do not take into account energy consumption and robustness. We focus our attention in a job-shop scheduling problem where machines can work at different speeds. It represents an extension of the classical job-shop scheduling problem, where each operation has to be executed by one machine and this machine can work at different speeds. The main goal of the paper is focused on the analysis of three important objectives (energy efficiency, robustness, and makespan) and the relationship among them. We present some analytical formulas to estimate the ratio/relationship between these parameters. It can be observed that there exists a clear relationship between robustness and energy efficiency and a clear trade-off between robustness/energy efficiency and makespan. It represents an advance in the state of the art of production scheduling, so obtaining energy-efficient solutions also supposes obtaining robust solutions, and vice versa.This research has been supported by the Spanish Government under research project MICINN TIN2013-46511-C2-1-P, the European CASES project (No. 294931) supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the FP7, and the European TETRACOM project (No. 609491) supported by FP7-ICT-2013-10. This research was also supported by the National Science Foundation of China (No. 51175262) and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK2012032.Salido Gregorio, MA.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS.; Tang, D.; Dai, M. (2015). Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems. AI EDAM. 30(3):300-312. https://doi.org/10.1017/S0890060415000335S300312303Billaut, J.-C., Moukrim, A., & Sanlaville, E. (Eds.). (2008). Flexibility and Robustness in Scheduling. doi:10.1002/9780470611432Nowicki, E., & Smutnicki, C. (2005). An Advanced Tabu Search Algorithm for the Job Shop Problem. Journal of Scheduling, 8(2), 145-159. doi:10.1007/s10951-005-6364-5Agnetis, A., Flamini, M., Nicosia, G., & Pacifici, A. (2010). A job-shop problem with one additional resource type. Journal of Scheduling, 14(3), 225-237. doi:10.1007/s10951-010-0162-4Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60(1), 41-44. doi:10.1016/j.cirp.2011.03.015Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., … Kellens, K. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2), 587-609. doi:10.1016/j.cirp.2012.05.002Laborie P. (2009). IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. Proc. 6th Int. Conf. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR09.Dahmus J. , & Gutowski T. (2004). An environmental analysis of machining. Proc. ASME Int. Mechanical Engineering Congr. RD&D Exposition, Anaheim, CA.Huang, K.-L., & Liao, C.-J. (2008). Ant colony optimization combined with taboo search for the job shop scheduling problem. Computers & Operations Research, 35(4), 1030-1046. doi:10.1016/j.cor.2006.07.003IBM. (2010). Modeling With IBM ILOG CP Optimizer—Practical Scheduling Examples (white paper). Armonk, NY: IBM Software Group.Kramer L. , Barbulescu L. , & Smith S. (2007). Understanding performance tradeoffs in algorithms for solving oversubscribed scheduling. Proc. 22nd Conf. Artificial Intelligence, AAAI-07, Vancouver.Seow, Y., & Rahimifard, S. (2011). A framework for modelling energy consumption within manufacturing systems. CIRP Journal of Manufacturing Science and Technology, 4(3), 258-264. doi:10.1016/j.cirpj.2011.03.007Li, W., Zein, A., Kara, S., & Herrmann, C. (2011). An Investigation into Fixed Energy Consumption of Machine Tools. Glocalized Solutions for Sustainability in Manufacturing, 268-273. doi:10.1007/978-3-642-19692-8_47Szathmáry, E. (2006). A robust approach. Nature, 439(7072), 19-20. doi:10.1038/439019aFang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:10.1016/j.jmsy.2011.08.004Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., … Wolff, E. (2005). Environmentally benign manufacturing: Observations from Japan, Europe and the United States. Journal of Cleaner Production, 13(1), 1-17. doi:10.1016/j.jclepro.2003.10.004Garrido A. , Salido M.A. , Barber F. , & López M.A. (2000). Heuristic methods for solving job-shop scheduling problems. Proc. ECAI-2000 Workshop on New Results in Planning, Scheduling and Design, Berlín.Verfaillie G. , & Schiex T. (1994). Solution reuse in dynamic constraint satisfaction problems. Proc. 12th National Conf. Artificial Intelligence, AAAI-94.Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001Neugebauer, R., Wabner, M., Rentzsch, H., & Ihlenfeldt, S. (2011). Structure principles of energy efficient machine tools. CIRP Journal of Manufacturing Science and Technology, 4(2), 136-147. doi:10.1016/j.cirpj.2011.06.017Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. doi:10.1080/19397030802257236Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462. doi:10.1016/j.cirp.2012.03.08
    corecore