145,990 research outputs found

    Arithmetic Operations in Multi-Valued Logic

    Full text link
    This paper presents arithmetic operations like addition, subtraction and multiplications in Modulo-4 arithmetic, and also addition, multiplication in Galois field, using multi-valued logic (MVL). Quaternary to binary and binary to quaternary converters are designed using down literal circuits. Negation in modular arithmetic is designed with only one gate. Logic design of each operation is achieved by reducing the terms using Karnaugh diagrams, keeping minimum number of gates and depth of net in to consideration. Quaternary multiplier circuit is proposed to achieve required optimization. Simulation result of each operation is shown separately using Hspice.Comment: 12 Pages, VLSICS Journal 201

    An extrinsic function-level evolvable hardware approach

    Get PDF
    The function level evolvable hardware approach to synthesize the combinational multiple-valued and binary logic functions is proposed in first time. The new representation of logic gate in extrinsic EHW allows us to describe behaviour of any multi-input multi-output logic function. The circuit is represented in the form of connections and functionalities of a rectangular array of building blocks. Each building block can implement primitive logic function or any multi-input multi-output logic function defined in advance. The method has been tested on evolving logic circuits using half adder, full adder and multiplier. The effectiveness of this approach is investigated for multiple-valued and binary arithmetical functions. For these functions either method appears to be much more efficient than similar approach with two-input one-output cell representation

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Relevant Logics Obeying Component Homogeneity

    Get PDF
    This paper discusses three relevant logics that obey Component Homogeneity - a principle that Goddard and Routley introduce in their project of a logic of significance. The paper establishes two main results. First, it establishes a general characterization result for two families of logic that obey Component Homogeneity - that is, we provide a set of necessary and sufficient conditions for their consequence relations. From this, we derive characterization results for S*fde, dS*fde, crossS*fde. Second, the paper establishes complete sequent calculi for S*fde, dS*fde, crossS*fde. Among the other accomplishments of the paper, we generalize the semantics from Bochvar, Hallden, Deutsch and Daniels, we provide a general recipe to define containment logics, we explore the single-premise/single-conclusion fragment of S*fde, dS*fde, crossS*fdeand the connections between crossS*fde and the logic Eq of equality by Epstein. Also, we present S*fde as a relevant logic of meaninglessness that follows the main philosophical tenets of Goddard and Routley, and we briefly examine three further systems that are closely related to our main logics. Finally, we discuss Routley's criticism to containment logic in light of our results, and overview some open issues

    Sequent and Hypersequent Calculi for Abelian and Lukasiewicz Logics

    Full text link
    We present two embeddings of infinite-valued Lukasiewicz logic L into Meyer and Slaney's abelian logic A, the logic of lattice-ordered abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for L. These include: hypersequent calculi for A and L and terminating versions of these calculi; labelled single sequent calculi for A and L of complexity co-NP; unlabelled single sequent calculi for A and L.Comment: 35 pages, 1 figur

    A Synthesis Method for Quaternary Quantum Logic Circuits

    Full text link
    Synthesis of quaternary quantum circuits involves basic quaternary gates and logic operations in the quaternary quantum domain. In this paper, we propose new projection operations and quaternary logic gates for synthesizing quaternary logic functions. We also demonstrate the realization of the proposed gates using basic quantum quaternary operations. We then employ our synthesis method to design of quaternary adder and some benchmark circuits. Our results in terms of circuit cost, are better than the existing works.Comment: 10 page
    • …
    corecore