488,698 research outputs found

    String and Membrane Gaussian Processes

    Full text link
    In this paper we introduce a novel framework for making exact nonparametric Bayesian inference on latent functions, that is particularly suitable for Big Data tasks. Firstly, we introduce a class of stochastic processes we refer to as string Gaussian processes (string GPs), which are not to be mistaken for Gaussian processes operating on text. We construct string GPs so that their finite-dimensional marginals exhibit suitable local conditional independence structures, which allow for scalable, distributed, and flexible nonparametric Bayesian inference, without resorting to approximations, and while ensuring some mild global regularity constraints. Furthermore, string GP priors naturally cope with heterogeneous input data, and the gradient of the learned latent function is readily available for explanatory analysis. Secondly, we provide some theoretical results relating our approach to the standard GP paradigm. In particular, we prove that some string GPs are Gaussian processes, which provides a complementary global perspective on our framework. Finally, we derive a scalable and distributed MCMC scheme for supervised learning tasks under string GP priors. The proposed MCMC scheme has computational time complexity O(N)\mathcal{O}(N) and memory requirement O(dN)\mathcal{O}(dN), where NN is the data size and dd the dimension of the input space. We illustrate the efficacy of the proposed approach on several synthetic and real-world datasets, including a dataset with 66 millions input points and 88 attributes.Comment: To appear in the Journal of Machine Learning Research (JMLR), Volume 1

    Алгоритм покращення результатів аналізу епілептичних сигналів ЕЕГ

    Get PDF
    Робота присвячена розробці програмного алгоритму для автоматичного розпізнавання та прогнозування епілетриформних частотних ритмів в сигналах ЕЕГ, за допомогою методів машинного навчання. Метою є створення програмної моделі для автоматичного розпізнавання та прогнозування епілетриформних частотних ритмів в сигналах ЕЕГ, за допомогою методів машинного навчання. Об’єктом дослідження є сигнали електроенцефалограми. Предметом дослідження виступають методи машинного навчання. У магістерській дисертації визначені основні напрямки досліджень штучного інтелекту, з використанням сигналів електроенцефалограми; досліджені переваги та недоліки методів аналізу; проведена попередня обробка сирих даних та сформовані набори вхідних даних; відфільтровано найефективніший та найінформативніший набір ознак; на основі платформи програмування Python 2.7.15 побудовано модель класифікації сигналів ЕЕГ; проведені дослідження з прогнозування епілепсії за допомогою методів машинного навчання. За результатами роботи опубліковано: стаття «Classification of epileptiform activity in EEG using machine learning techniques» у науковому журналі «Science, Research, Development» (червень 2018 року); тези «Розпізнавання епілептичної активності в сигналах ЕЕГ за допомогою методів машинного навчання» у науково-практичному журналі «Інформаційні системи та технології в медицині» ISM-2018 (листопад 2018 року).The volume of the report is 85 pages, 42 figures, 6 tables, 7 formulas, two applications are included. In total 47 references were analyzed. Epilepsy is the fourth most common neurological problem in the world. When diagnosing epilepsy, the most informative is the registration of EEG, which helps distinguish epileptic seizures from non˗epileptic seizures and classify them. Aim: EEG signal classification model based on machine learning methods. In the master's dissertation were determined the basic directions of research of artificial intelligence, using signals of an electroencephalogram. Were investigated the advantages and disadvantages of the analysis methods. Preprocessing of raw data have been done and formed input datasets. The most effective and informative set of features filtered out. A model of the classification of EEG signals was constructed using the programming platform Python 2.7.15. Researches have been conducted on the prediction of epilepsy with by the machine learning methods. The article «Classification of epileptiform activity in EEG using machine learning techniques» was published in the journal «Science, Research, Development» (June 2018) and thesis «Recognition of epileptic activity in EEG signals using machine learning methods» was published in the journal «Information systems and technologies in medicine ISM–2018» (November 2018) based on research results

    An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics

    Full text link
    [EN] The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056.García, J.; Astorga, G.; Yepes, V. (2021). An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics. Mathematics. 9(3):1-20. https://doi.org/10.3390/math9030225S12093Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574Guo, H., Liu, B., Cai, D., & Lu, T. (2016). Predicting protein–protein interaction sites using modified support vector machine. International Journal of Machine Learning and Cybernetics, 9(3), 393-398. doi:10.1007/s13042-015-0450-6Korkmaz, S., Babalik, A., & Kiran, M. S. (2017). An artificial algae algorithm for solving binary optimization problems. International Journal of Machine Learning and Cybernetics, 9(7), 1233-1247. doi:10.1007/s13042-017-0772-7García, J., Martí, J. V., & Yepes, V. (2020). The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm. Mathematics, 8(6), 862. doi:10.3390/math8060862Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-yJuan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389Zheng, B., Zhang, J., Yoon, S. W., Lam, S. S., Khasawneh, M., & Poranki, S. (2015). Predictive modeling of hospital readmissions using metaheuristics and data mining. Expert Systems with Applications, 42(20), 7110-7120. doi:10.1016/j.eswa.2015.04.066De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, 106040. doi:10.1016/j.cie.2019.106040Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi:10.1016/j.cad.2010.12.015Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi:10.1016/j.cnsns.2012.05.010Cuevas, E., & Cienfuegos, M. (2014). A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Systems with Applications, 41(2), 412-425. doi:10.1016/j.eswa.2013.07.067Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research, 32, 565-606. doi:10.1613/jair.2490Smith-Miles, K., & van Hemert, J. (2011). Discovering the suitability of optimisation algorithms by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2), 87-104. doi:10.1007/s10472-011-9230-5Peña, J. M., Lozano, J. A., & Larrañaga, P. (2005). Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. Evolutionary Computation, 13(1), 43-66. doi:10.1162/1063656053583432Hutter, F., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2014). Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence, 206, 79-111. doi:10.1016/j.artint.2013.10.003Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. doi:10.1016/j.swevo.2011.02.001García, J., Yepes, V., & Martí, J. V. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics, 8(4), 555. doi:10.3390/math8040555García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507Poikolainen, I., Neri, F., & Caraffini, F. (2015). Cluster-Based Population Initialization for differential evolution frameworks. Information Sciences, 297, 216-235. doi:10.1016/j.ins.2014.11.026García, J., & Maureira, C. (2021). A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem. Applied Soft Computing, 102, 107077. doi:10.1016/j.asoc.2020.107077Rice, J. R. (1976). The Algorithm Selection Problem. Advances in Computers Volume 15, 65-118. doi:10.1016/s0065-2458(08)60520-3Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695-1724. doi:10.1057/jors.2013.71Florez-Lozano, J., Caraffini, F., Parra, C., & Gongora, M. (2020). Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection. Information Fusion, 64, 32-49. doi:10.1016/j.inffus.2020.06.009Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185-204. doi:10.1016/j.knosys.2018.08.003Feng, Y., An, H., & Gao, X. (2018). The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm. Mathematics, 7(1), 17. doi:10.3390/math7010017Zhang, G. (2010). Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics, 17(3), 303-351. doi:10.1007/s10732-010-9136-0Srikanth, K., Panwar, L. K., Panigrahi, B., Herrera-Viedma, E., Sangaiah, A. K., & Wang, G.-G. (2018). Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Computers & Electrical Engineering, 70, 243-260. doi:10.1016/j.compeleceng.2017.07.023Hu, H., Yang, K., Liu, L., Su, L., & Yang, Z. (2019). Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm. Water Resources Management, 33(7), 2357-2379. doi:10.1007/s11269-018-2138-7Gao, Y. J., Zhang, F. M., Zhao, Y., & Li, C. (2019). A novel quantum-inspired binary wolf pack algorithm for difficult knapsack problem. International Journal of Wireless and Mobile Computing, 16(3), 222. doi:10.1504/ijwmc.2019.099861Kumar, Y., Verma, S. K., & Sharma, S. (2020). Quantum-inspired binary gravitational search algorithm to recognize the facial expressions. International Journal of Modern Physics C, 31(10), 2050138. doi:10.1142/s0129183120501387Balas, E., & Padberg, M. W. (1976). Set Partitioning: A survey. SIAM Review, 18(4), 710-760. doi:10.1137/1018115Borneman, J., Chrobak, M., Della Vedova, G., Figueroa, A., & Jiang, T. (2001). Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics, 17(Suppl 1), S39-S48. doi:10.1093/bioinformatics/17.suppl_1.s39Boros, E., Hammer, P. L., Ibaraki, T., & Kogan, A. (1997). Logical analysis of numerical data. Mathematical Programming, 79(1-3), 163-190. doi:10.1007/bf02614316Balas, E., & Carrera, M. C. (1996). A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering. Operations Research, 44(6), 875-890. doi:10.1287/opre.44.6.875Beasley, J. E. (1987). An algorithm for set covering problem. European Journal of Operational Research, 31(1), 85-93. doi:10.1016/0377-2217(87)90141-xBeasley, J. E. (1990). A lagrangian heuristic for set-covering problems. Naval Research Logistics, 37(1), 151-164. doi:10.1002/1520-6750(199002)37:13.0.co;2-2Beasley, J. ., & Chu, P. . (1996). A genetic algorithm for the set covering problem. European Journal of Operational Research, 94(2), 392-404. doi:10.1016/0377-2217(95)00159-xSoto, R., Crawford, B., Olivares, R., Barraza, J., Figueroa, I., Johnson, F., … Olguín, E. (2017). Solving the non-unicost set covering problem by using cuckoo search and black hole optimization. Natural Computing, 16(2), 213-229. doi:10.1007/s11047-016-9609-

    Selecting cash management models from a multiobjective perspective

    Full text link
    [EN] This paper addresses the problem of selecting cash management models under different operating conditions from a multiobjective perspective considering not only cost but also risk. A number of models have been proposed to optimize corporate cash management policies. The impact on model performance of different operating conditions becomes an important issue. Here, we provide a range of visual and quantitative tools imported from Receiver Operating Characteristic (ROC) analysis. More precisely, we show the utility of ROC analysis from a triple perspective as a tool for: (1) showing model performance; (2) choosingmodels; and (3) assessing the impact of operating conditions on model performance. We illustrate the selection of cash management models by means of a numerical example.Work partially funded by projects Collectiveware TIN2015-66863-C2-1-R (MINECO/FEDER) and 2014 SGR 118.Salas-Molina, F.; Rodríguez-Aguilar, JA.; Díaz-García, P. (2018). Selecting cash management models from a multiobjective perspective. Annals of Operations Research. 261(1-2):275-288. https://doi.org/10.1007/s10479-017-2634-9S2752882611-2Ballestero, E. (2007). Compromise programming: A utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions. European Journal of Operational Research, 182(3), 1369–1382.Ballestero, E., & Romero, C. (1998). Multiple criteria decision making and its applications to economic problems. Berlin: Springer.Bi, J., & Bennett, K. P. (2003). Regression error characteristic curves. In Proceedings of the 20th international conference on machine learning (ICML-03), pp. 43–50.Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.da Costa Moraes, M. B., Nagano, M. S., & Sobreiro, V. A. (2015). Stochastic cash flow management models: A literature review since the 1980s. In Decision models in engineering and management (pp. 11–28). New York: Springer.Doumpos, M., & Zopounidis, C. (2007). Model combination for credit risk assessment: A stacked generalization approach. Annals of Operations Research, 151(1), 289–306.Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost: An alternative to roc representation. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 98–207). New York: ACM.Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130.Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference on artificial intelligence (Vol. 17, pp. 973–978). Lawrence Erlbaum associates Ltd.Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874.Flach, P. A. (2003). The geometry of roc space: understanding machine learning metrics through roc isometrics. In Proceedings of the 20th international conference on machine learning (ICML-03), pp. 194–201.Garcia-Bernabeu, A., Benito, A., Bravo, M., & Pla-Santamaria, D. (2016). Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western spain. Annals of Operations Research, 245(1–2), 163–175.Glasserman, P. (2003). Monte Carlo methods in financial engineering (Vol. 53). New York: Springer.Gregory, G. (1976). Cash flow models: a review. Omega, 4(6), 643–656.Hernández-Orallo, J. (2013). Roc curves for regression. Pattern Recognition, 46(12), 3395–3411.Hernández-Orallo, J., Flach, P., & Ferri, C. (2013). Roc curves in cost space. Machine Learning, 93(1), 71–91.Hernández-Orallo, J., Lachiche, N., & Martınez-Usó, A. (2014). Predictive models for multidimensional data when the resolution context changes. In Workshop on learning over multiple contexts at ECML, volume 2014.Metz, C. E. (1978). Basic principles of roc analysis. In Seminars in nuclear medicine (Vol. 8, pp. 283–298). Amsterdam: Elsevier.Miettinen, K. (2012). Nonlinear multiobjective optimization (Vol. 12). Berlin: Springer.Ringuest, J. L. (2012). Multiobjective optimization: Behavioral and computational considerations. Berlin: Springer.Ross, S. A., Westerfield, R., & Jordan, B. D. (2002). Fundamentals of corporate finance (sixth ed.). New York: McGraw-Hill.Salas-Molina, F., Pla-Santamaria, D., & Rodriguez-Aguilar, J. A. (2016). A multi-objective approach to the cash management problem. Annals of Operations Research, pp. 1–15.Srinivasan, V., & Kim, Y. H. (1986). Deterministic cash flow management: State of the art and research directions. Omega, 14(2), 145–166.Steuer, R. E., Qi, Y., & Hirschberger, M. (2007). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297–317.Stone, B. K. (1972). The use of forecasts and smoothing in control limit models for cash management. Financial Management, 1(1), 72.Torgo, L. (2005). Regression error characteristic surfaces. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (pp. 697–702). ACM.Yu, P.-L. (1985). Multiple criteria decision making: concepts, techniques and extensions. New York: Plenum Press.Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw-Hill

    Glaucoma Detection from Raw SD-OCT Volumes: a Novel Approach Focused on Spatial Dependencies

    Full text link
    [EN] Background and objective:Glaucoma is the leading cause of blindness worldwide. Many studies based on fundus image and optical coherence tomography (OCT) imaging have been developed in the literature to help ophthalmologists through artificial-intelligence techniques. Currently, 3D spectral-domain optical coherence tomography (SD-OCT) samples have become more important since they could enclose promising information for glaucoma detection. To analyse the hidden knowledge of the 3D scans for glaucoma detection, we have proposed, for the first time, a deep-learning methodology based on leveraging the spatial dependencies of the features extracted from the B-scans. Methods:The experiments were performed on a database composed of 176 healthy and 144 glaucomatous SD-OCT volumes centred on the optic nerve head (ONH). The proposed methodology consists of two well-differentiated training stages: a slide-level feature extractor and a volume-based predictive model. The slide-level discriminator is characterised by two new, residual and attention, convolutional modules which are combined via skip-connections with other fine-tuned architectures. Regarding the second stage, we first carried out a data-volume conditioning before extracting the features from the slides of the SD-OCT volumes. Then, Long Short-Term Memory (LSTM) networks were used to combine the recurrent dependencies embedded in the latent space to provide a holistic feature vector, which was generated by the proposed sequential-weighting module (SWM). Results:The feature extractor reports AUC values higher than 0.93 both in the primary and external test sets. Otherwise, the proposed end-to-end system based on a combination of CNN and LSTM networks achieves an AUC of 0.8847 in the prediction stage, which outperforms other state-of-the-art approaches intended for glaucoma detection. Additionally, Class Activation Maps (CAMs) were computed to highlight the most interesting regions per B-scan when discerning between healthy and glaucomatous eyes from raw SD-OCT volumes. Conclusions:The proposed model is able to extract the features from the B-scans of the volumes and combine the information of the latent space to perform a volume-level glaucoma prediction. Our model, which combines residual and attention blocks with a sequential weighting module to refine the LSTM outputs, surpass the results achieved from current state-of-the-art methods focused on 3D deep-learning architectures.The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used here.This work has been funded by GALAHAD project [H2020-ICT-2016-2017, 732613], SICAP project (DPI2016-77869-C2-1-R) and GVA through project PROMETEO/2019/109. The work of Gabriel García has been supported by the State Research Spanish Agency PTA2017-14610-I.García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V. (2021). Glaucoma Detection from Raw SD-OCT Volumes: a Novel Approach Focused on Spatial Dependencies. Computer Methods and Programs in Biomedicine. 200:1-16. https://doi.org/10.1016/j.cmpb.2020.105855S116200Weinreb, R. N., & Khaw, P. T. (2004). Primary open-angle glaucoma. The Lancet, 363(9422), 1711-1720. doi:10.1016/s0140-6736(04)16257-0Jonas, J. B., Aung, T., Bourne, R. R., Bron, A. M., Ritch, R., & Panda-Jonas, S. (2018). Glaucoma – Authors’ reply. The Lancet, 391(10122), 740. doi:10.1016/s0140-6736(18)30305-2Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121(11), 2081-2090. doi:10.1016/j.ophtha.2014.05.013Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., … Fujimoto, J. G. (1991). Optical Coherence Tomography. Science, 254(5035), 1178-1181. doi:10.1126/science.1957169Medeiros, F. A., Zangwill, L. M., Alencar, L. M., Bowd, C., Sample, P. A., Susanna, R., & Weinreb, R. N. (2009). Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements. Investigative Opthalmology & Visual Science, 50(12), 5741. doi:10.1167/iovs.09-3715Sinthanayothin, C., Boyce, J. F., Williamson, T. H., Cook, H. L., Mensah, E., Lal, S., & Usher, D. (2002). Automated detection of diabetic retinopathy on digital fundus images. Diabetic Medicine, 19(2), 105-112. doi:10.1046/j.1464-5491.2002.00613.xWalter, T., Massin, P., Erginay, A., Ordonez, R., Jeulin, C., & Klein, J.-C. (2007). Automatic detection of microaneurysms in color fundus images. Medical Image Analysis, 11(6), 555-566. doi:10.1016/j.media.2007.05.001Diaz-Pinto, A., Colomer, A., Naranjo, V., Morales, S., Xu, Y., & Frangi, A. F. (2019). Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 38(9), 2211-2218. doi:10.1109/tmi.2019.2903434Bussel, I. I., Wollstein, G., & Schuman, J. S. (2013). OCT for glaucoma diagnosis, screening and detection of glaucoma progression. British Journal of Ophthalmology, 98(Suppl 2), ii15-ii19. doi:10.1136/bjophthalmol-2013-304326Varma, R., Steinmann, W. C., & Scott, I. U. (1992). Expert Agreement in Evaluating the Optic Disc for Glaucoma. Ophthalmology, 99(2), 215-221. doi:10.1016/s0161-6420(92)31990-6Jaffe, G. J., & Caprioli, J. (2004). Optical coherence tomography to detect and manage retinal disease and glaucoma. American Journal of Ophthalmology, 137(1), 156-169. doi:10.1016/s0002-9394(03)00792-xHood, D. C., & Raza, A. S. (2014). On improving the use of OCT imaging for detecting glaucomatous damage. British Journal of Ophthalmology, 98(Suppl 2), ii1-ii9. doi:10.1136/bjophthalmol-2014-305156Bizios, D., Heijl, A., Hougaard, J. L., & Bengtsson, B. (2010). Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmologica, 88(1), 44-52. doi:10.1111/j.1755-3768.2009.01784.xKim, S. J., Cho, K. J., & Oh, S. (2017). Development of machine learning models for diagnosis of glaucoma. PLOS ONE, 12(5), e0177726. doi:10.1371/journal.pone.0177726Medeiros, F. A., Jammal, A. A., & Thompson, A. C. (2019). From Machine to Machine. Ophthalmology, 126(4), 513-521. doi:10.1016/j.ophtha.2018.12.033An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., … Nakazawa, T. (2019). Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images. Journal of Healthcare Engineering, 2019, 1-9. doi:10.1155/2019/4061313Fang, L., Cunefare, D., Wang, C., Guymer, R. H., Li, S., & Farsiu, S. (2017). Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomedical Optics Express, 8(5), 2732. doi:10.1364/boe.8.002732Pekala, M., Joshi, N., Liu, T. Y. A., Bressler, N. M., DeBuc, D. C., & Burlina, P. (2019). Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114, 103445. doi:10.1016/j.compbiomed.2019.103445Barella, K. A., Costa, V. P., Gonçalves Vidotti, V., Silva, F. R., Dias, M., & Gomi, E. S. (2013). Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT. Journal of Ophthalmology, 2013, 1-7. doi:10.1155/2013/789129Vidotti, V. G., Costa, V. P., Silva, F. R., Resende, G. M., Cremasco, F., Dias, M., & Gomi, E. S. (2013). Sensitivity and Specificity of Machine Learning Classifiers and Spectral Domain OCT for the Diagnosis of Glaucoma. European Journal of Ophthalmology, 23(1), 61-69. doi:10.5301/ejo.5000183Xu, J., Ishikawa, H., Wollstein, G., Bilonick, R. A., Folio, L. S., Nadler, Z., … Schuman, J. S. (2013). Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection. PLoS ONE, 8(2), e55476. doi:10.1371/journal.pone.0055476Maetschke, S., Antony, B., Ishikawa, H., Wollstein, G., Schuman, J., & Garnavi, R. (2019). A feature agnostic approach for glaucoma detection in OCT volumes. PLOS ONE, 14(7), e0219126. doi:10.1371/journal.pone.0219126Ran, A. R., Cheung, C. Y., Wang, X., Chen, H., Luo, L., Chan, P. P., … Tham, C. C. (2019). Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. The Lancet Digital Health, 1(4), e172-e182. doi:10.1016/s2589-7500(19)30085-8De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., … Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350. doi:10.1038/s41591-018-0107-6Wang, X., Chen, H., Ran, A.-R., Luo, L., Chan, P. P., Tham, C. C., … Heng, P.-A. (2020). Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Medical Image Analysis, 63, 101695. doi:10.1016/j.media.2020.101695Ran, A. R., Shi, J., Ngai, A. K., Chan, W.-Y., Chan, P. P., Young, A. L., … Cheung, C. Y. (2019). Artificial intelligence deep learning algorithm for discriminating ungradable optical coherence tomography three-dimensional volumetric optic disc scans. Neurophotonics, 6(04), 1. doi:10.1117/1.nph.6.4.041110Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Jiang, J., Liu, X., Liu, L., Wang, S., Long, E., Yang, H., … Lin, H. (2018). Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLOS ONE, 13(7), e0201142. doi:10.1371/journal.pone.0201142Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., & Liang, J. (2016). Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging, 35(5), 1299-1312. doi:10.1109/tmi.2016.2535302Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.13

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE
    corecore