1,275,993 research outputs found

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-Velásquez, FD.; España Cubillo, S.; Pastor López, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & Simão, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & Wüst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.Bézivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., Gómez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., Género, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ramos, I., & Fernández, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas Informíticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .González, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.González, C.A., Büttner, F., Clarisó, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.Goulão, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & Valdés, A.P. (2012). Una introducción al desarrollo de software dirigido por modelos. Serie Científica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & Marqués, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    On environment difficulty and discriminating power

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-014-9257-1This paper presents a way to estimate the difficulty and discriminating power of any task instance. We focus on a very general setting for tasks: interactive (possibly multiagent) environments where an agent acts upon observations and rewards. Instead of analysing the complexity of the environment, the state space or the actions that are performed by the agent, we analyse the performance of a population of agent policies against the task, leading to a distribution that is examined in terms of policy complexity. This distribution is then sliced by the algorithmic complexity of the policy and analysed through several diagrams and indicators. The notion of environment response curve is also introduced, by inverting the performance results into an ability scale. We apply all these concepts, diagrams and indicators to two illustrative problems: a class of agent-populated elementary cellular automata, showing how the difficulty and discriminating power may vary for several environments, and a multiagent system, where agents can become predators or preys, and may need to coordinate. Finally, we discuss how these tools can be applied to characterise (interactive) tasks and (multi-agent) environments. These characterisations can then be used to get more insight about agent performance and to facilitate the development of adaptive tests for the evaluation of agent abilities.I thank the reviewers for their comments, especially those aiming at a clearer connection with the field of multi-agent systems and the suggestion of better approximations for the calculation of the response curves. The implementation of the elementary cellular automata used in the environments is based on the library 'CellularAutomaton' by John Hughes for R [58]. I am grateful to Fernando Soler-Toscano for letting me know about their work [65] on the complexity of 2D objects generated by elementary cellular automata. I would also like to thank David L. Dowe for his comments on a previous version of this paper. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).José Hernández-Orallo (2015). On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems. 29(3):402-454. https://doi.org/10.1007/s10458-014-9257-1S402454293Anderson, J., Baltes, J., & Cheng, C. T. (2011). Robotics competitions as benchmarks for ai research. The Knowledge Engineering Review, 26(01), 11–17.Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In Proceedings of the National Conference on Artificial Intelligence (pp. 119–125). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Antunes, L., Fortnow, L., van Melkebeek, D., & Vinodchandran, N. V. (2006). Computational depth: Concept and applications. Theoretical Computer Science, 354(3), 391–404. Foundations of Computation Theory (FCT 2003), 14th Symposium on Fundamentals of Computation Theory 2003.Arai, K., Kaminka, G. A., Frank, I., & Tanaka-Ishii, K. (2003). Performance competitions as research infrastructure: Large scale comparative studies of multi-agent teams. Autonomous Agents and Multi-Agent Systems, 7(1–2), 121–144.Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Chapter 8 working memory, automaticity, and problem difficulty. In Jamie I.D. Campbell (Ed.), The nature and origins of mathematical skills, volume 91 of advances in psychology (pp. 301–329). North-Holland.Ay, N., Müller, M., & Szkola, A. (2010). Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 56(9), 4593–4607.Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak using Jason. London: Wiley. com.Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S. et al. (2000). Decision-theoretic, high-level agent programming in the situation calculus. In Proceedings of the National Conference on Artificial Intelligence (pp. 355–362). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2), 156–172.Chaitin, G. J. (1977). Algorithmic information theory. IBM Journal of Research and Development, 21, 350–359.Chedid, F. B. (2010). Sophistication and logical depth revisited. In 2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) (pp. 1–4). IEEE.Cheeseman, P., Kanefsky, B. & Taylor, W. M. (1991). Where the really hard problems are. In Proceedings of IJCAI-1991 (pp. 331–337).Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-agent Systems, 16(3), 214–248.Delahaye, J. P. & Zenil, H. (2011). Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1), 63–77Dowe, D. L. (2008). Foreword re C. S. Wallace. Computer Journal, 51(5), 523–560. Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L., & Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Du, D. Z., & Ko, K. I. (2011). Theory of computational complexity (Vol. 58). London: Wiley-Interscience.Elo, A. E. (1978). The rating of chessplayers, past and present (Vol. 3). London: Batsford.Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. London: Lawrence Erlbaum.Fatès, N. & Chevrier, V. (2010). How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1 (pp. 533–540). International Foundation for Autonomous Agents and Multiagent Systems.Ferber, J. & Müller, J. P. (1996). Influences and reaction: A model of situated multiagent systems. In Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72–79).Ferrando, P. J. (2009). Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Applied Psychological Measurement, 33(1), 9–24.Ferrando, P. J. (2012). Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica, 33, 111–139.Gent, I. P., & Walsh, T. (1994). Easy problems are sometimes hard. Artificial Intelligence, 70(1), 335–345.Gershenson, C. & Fernandez, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.Gruner, S. (2010). Mobile agent systems and cellular automata. Autonomous Agents and Multi-agent Systems, 20(2), 198–233.Hardman, D. K., & Payne, S. J. (1995). Problem difficulty and response format in syllogistic reasoning. The Quarterly Journal of Experimental Psychology, 48(4), 945–975.He, J., Reeves, C., Witt, C., & Yao, X. (2007). A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evolutionary Computation, 15(4), 435–443.Hernández-Orallo, J. (2000). Beyond the turing test. Journal of Logic Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000). On the computational measurement of intelligence factors. In A. Meystel (Ed.), Performance metrics for intelligent systems workshop (pp. 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2000). Thesis: Computational measures of information gain and reinforcement in inference processes. AI Communications, 13(1), 49–50.Hernández-Orallo, J. (2010). A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In M. Hutter et al. (Ed.), 3rd International Conference on Artificial General Intelligence (pp. 182–183). Atlantis Press Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf .Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Insa-Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 82–91). Berlin: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2014). Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research, 27, 50–74.Hernández-Orallo, J., Insa, J., Dowe, D. L. & Hibbard, B. (2012). Turing tests with turing machines. In A. Voronkov (Ed.), The Alan Turing Centenary Conference, Turing-100, Manchester, 2012, volume 10 of EPiC Series (pp. 140–156).Hernández-Orallo, J. & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of International Symposium of Engineering of Intelligent Systems (EIS’98) (pp. 146–163). ICSC Press.Hibbard, B. (2009). Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence, 1(1), 54–61.Hoos, H. H. (1999). Sat-encodings, search space structure, and local search performance. In 1999 International Joint Conference on Artificial Intelligence (Vol. 16, pp. 296–303).Insa-Cabrera, J., Benacloch-Ayuso, J. L., & Hernández-Orallo, J. (2012). On measuring social intelligence: Experiments on competition and cooperation. In J. Bach, B. Goertzel, & M. Iklé (Eds.), AGI, volume 7716 of lecture notes in computer science (pp. 126–135). Berlin: Springer.Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011). Comparing humans and AI agents. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 122–132). Berlin: Springer.Knuth, D. E. (1973). Sorting and searching, volume 3 of the art of computer programming. Reading, MA: Addison-Wesley.Kotovsky, K., & Simon, H. A. (1990). What makes some problems really hard: Explorations in the problem space of difficulty. Cognitive Psychology, 22(2), 143–183.Legg, S. (2008). Machine super intelligence. PhD thesis, Department of Informatics, University of Lugano, June 2008.Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Leonetti, M. & Iocchi, L. (2010). Improving the performance of complex agent plans through reinforcement learning. In Proceedings of the 2010 International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 723–730). International Foundation for Autonomous Agents and Multiagent Systems.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Levin, L. A. (1986). Average case complete problems. SIAM Journal on Computing, 15, 285.Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). Berlin: Springer.Low, C. K., Chen, T. Y., & Rónnquist, R. (1999). Automated test case generation for bdi agents. Autonomous Agents and Multi-agent Systems, 2(4), 311–332.Madden, M. G., & Howley, T. (2004). Transfer of experience between reinforcement learning environments with progressive difficulty. Artificial Intelligence Review, 21(3), 375–398.Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300.Michel, F. (2004). Formalisme, outils et éléments méthodologiques pour la modélisation et la simulation multi-agents. PhD thesis, Université des sciences et techniques du Languedoc, Montpellier.Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.Orponen, P., Ko, K. I., Schöning, U., & Watanabe, O. (1994). Instance complexity. Journal of the ACM (JACM), 41(1), 96–121.Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns. Psychological Review, 70(6), 534.Team, R., et al. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Whiteson, S., Tanner, B., & White, A. (2010). The reinforcement learning competitions. The AI Magazine, 31(2), 81–94.Wiering, M., & van Otterlo, M. (Eds.). (2012). Reinforcement learning: State-of-the-art. Berlin: Springer.Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Zatuchna, Z., & Bagnall, A. (2009). Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior, 17(1), 28–57.Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1–28.Zenil, H. (2011). Une approche expérimentale à la théorie algorithmique de la complexité. PhD thesis, Dissertation in fulfilment of the degree of Doctor in Computer Science, Université de Lille.Zenil, H., Soler-Toscano, F., Delahaye, J. P. & Gauvrit, N. (2012). Two-dimensional kolmogorov complexity and validation of the coding theorem method by compressibility. arXiv, preprint arXiv:1212.6745

    Programación lineal para el análisis y la recreación virtual de episodios históricos: la distribución de la artillería durante el sitio de Bilbao en 1874

    Get PDF
    [EN] The current digital technologies development makes it possible to apply new forms of studying historical events considering the geographical point of view. They rely on the location and the relationships among the different elements that took part in them over a recreated space (e.g. relief, roads, rivers); once these elements have been laid out on the virtual space, Geographic Information Systems (GIS) can be used to analyse several factors, such as distances, visibility, connectivity and so on. Nevertheless, the development of the actions was also driven by the aims, needs and beliefs (either wise or misguided) of the people/actors involved in those situations; therefore, some ways of including reasoning would significantly improve the actual recreation and understanding of the episodes. In this sense, “linear programming” is a very versatile tool for system modelling and optimization that is broadly used in many fields (e.g. industry, transports, agriculture, etc.). Likewise, this technique can also be applied to past scenarios to simulate dynamics and cross-check sources. In this text, two models regarding the distribution and the allocation of supplies during the siege of Bilbao, in the framework of the Third Carlist War (1872-1876), from both parties —beleaguerer and besieged— were established based on the war front textual reports. In these models, the scenario is recreated through the system variables (which define the alternatives that can be or could have been taken) and the constraints (which limit the range of action); moreover, the actors’ goals that guided the course of events are defined by the objective. Despite the simplification in the modelling, the results show very interesting hints about the dynamics involved during the processes and are able to highlight some critical issues that significantly conditioned the final results. Besides, the modelling process itself proved to be an opportunity for collaboration between historians and computer scientists.[ES] El desarrollo de las tecnologías digitales ha posibilitado nuevas formas de estudio de los sucesos históricos desde la perspectiva geográfica. Estos métodos se basan en la localización (sobre un espacio que incluye el relieve, las vías de comunicación, los ríos, etc.) y el establecimiento de las relaciones entre los diferentes elementos que intervinieron en dichos sucesos. Una vez que toda esta información ha sido representada en el espacio virtual, es posible recurrir a los Sistemas de Información Geográfica (SIG) con el fin de analizar diversos factores como las distancias, la visibilidad, la conectividad, etc. Sin embargo, resulta evidente que el desarrollo de los acontecimientos también estuvo condicionado por las intenciones, las necesidades y las impresiones (tanto correctas como equivocadas) de las personas que intervinieron en ellos; por lo tanto, resulta oportuno pensar que la recreación del desarrollo de los eventos históricos, así como su correcta comprensión, mejorará sustancialmente si se incorpora algún método para simular el razonamiento de los actores. En esta línea, la “programación lineal” es una opción versátil para el modelado y la optimización de sistemas que cuenta con una amplia experiencia en diversos campos como la industria, los transportes, la agricultura, etc. Asimismo, esta técnica de modelado también es aplicable a escenarios históricos con el fin de realizar simulaciones de las dinámicas que se establecieron y como método de validación de las fuentes. En el presente texto, se desarrollan —con base a los informes del frente de guerra— dos modelos relativos a la distribución de suministros durante el sitio de la villa de Bilbao —que tuvo lugar en el contexto de la Tercera Guerra Carlista (1872-1876)— que corresponden a ambas partes (es decir, a los sitiadores y a los sitiados). En los modelos, el escenario se recrea a través de las variables del sistema (las cuales definen las alternativas que pueden tomarse) y las restricciones (que limitan el rango de acción), por otro lado, las metas que guiaron el curso de los acontecimientos se definen mediante el objetivo. A pesar de la simplificación que implica el proceso de modelado, los resultados ofrecen interesantes indicaciones sobre las dinámicas que intervinieron en el desarrollo de los procesos y son capaces de identificar aspectos críticos que, efectivamente, condicionaron los resultados finales. Asimismo, el propio proceso de modelado resulta ser una oportunidad de colaboración entre historiadores y expertos informáticos. The participation of Gorka Martín and Jaione Korro in this research is supported by the Basque Government through grants for doctoral studies of the call 2019-2020. Figures 1 and 3 are reproduced here with the permission of the Bizkaia Provincial Council Historical Archive (Archivo Histórico de la Diputación Foral de Bizkaia / Bizkaiko Foru Aldundiaren Agiritegi Historikoa).Rodriguez-Miranda, A.; Ferreira-Lopes, P.; Martín-Etxebarria, G.; Korro Bañuelos, J. (2021). Linear programming for the analysis and virtual recreation of historical events: the allocation of the artillery during the Siege of Bilbao in 1874. Virtual Archaeology Review. 12(25):99-113. https://doi.org/10.4995/var.2021.15278991131225Alves, D., & Queiroz, A. I. (2015). Exploring literary landscapes: from texts to spatiotemporal analysis through collaborative work and GIS. International Journal of Humanities and Arts Computing, 9(1), 57-73. http://www.euppublishing.com/doi/abs/10.3366/ijhac.2015.0138Bachagha, N., Wang, X., Luo, L., Li, L., Khatteli, H., & Lasaponara, R. (2020). Remote sensing and GIS techniques for reconstructing the military fort system on the Roman boundary (Tunisian section) and identifying archaeological sites. Remote Sensing of Environment, 236, 111418. https://doi.org/10.1016/j.rse.2019.111418Barone, P. M. (2019). Bombed Archeology: Towards a Precise Identification and a Safe Management of WWII's Dangerous Unexploded Bombs. Heritage, 2(4), 2704-2711. https://doi.org/10.3390/heritage2040167Bevan A., & Wilson, A. (2013). Models of settlement hierarchy based on partial evidence. Journal of Archaeological Science, 40, 2415-2427. https://doi.org/10.1016/j.jas.2012.12.025Blanco-Rotea, R. (2015). Arquitectura y Paisaje. Fortificaciones de frontera en el sur de Galicia y norte de Portugal. (Doctoral thesis, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Spain). http://hdl.handle.net/10261/122137Bocinsky, R. K. (2014). Extrinsic site defensibility and landscape-based archaeological inference: An example from the Northwest Coast. Journal of Anthropological Archaeology, 35, 164-176. http://dx.doi.org/10.1016/j.jaa.2014.05.003Brughmans, T. (2013). Thinking Through Networks: A Review of Formal Network Methods in Archaeology. Journal of Archaeological Method and Theory, 20, 623-662. https://doi.org/10.1007/s10816-012-9133-8Caldwell, T. (2019). Defend Your Coast: Network Analysis of Crusader Fortifications and Settlements in the Kyrenia Region of Cyprus (Doctoral thesis, Faculty of the Program in Maritime Studies of Department of History East Carolina University, United States of America). http://hdl.handle.net/10342/7261Canosa-Betés, J. (2016). Border surveillance: Testing the territorial control of the Andalusian defense network in center-south Iberia through GIS. Journal of Archaeological Science: Reports, 9, 416-426. http://dx.doi.org/10.1016/j.jasrep.2016.08.026Cooper, D., & Gregory, I. N. (2011). Mapping the English Lake District: a literary GIS. Transactions of the Institute of British Geographers, 36(1), 89-108. https://doi.org/10.1111/j.1475-5661.2010.00405.xCrespo Solana, A. (ed.). (2014). Spatio-temporal Narratives: Historical GIS and the Study of Global Trading Networks (1500-1800). Newcastle: Cambridge Scholars Pub.Cuca, B., Brumana, R., Scaioni, M., & Oreni, D. (2011). Spatial data management of temporal map series for cultural and environmental heritage. International Journal of Spatial Data Infrastructures Research, 6, 97-125. http://dx.doi.org/10.2902/1725-0463.2011.06.art5Cuerpo del Estado Mayor del Ejército (ed.) (1885). Narración militar de la Guerra Carlista de 1869 a 1876, Madrid: Imprenta y Litografía del Depósito de la Guerra, Tomo IV.de Kleijn, M., de Hond, R. J. F., & Martinez-Rubi, O. (2016). A 3D GIS Infrastructure for "Mapping the Via Appia". Digital Applications in Archaeology and Cultural Heritage, 3(2), 23-32. https://doi.org/10.1016/j.daach.2016.03.001Deidda, M., Musa, C., & Vacca, G. (2015). A GIS of Sardinia's coastal defense system (XVI - XVIII century). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W7, 17-22. https://doi.org/10.5194/isprsarchives-XL-4-W7-17-2015Düring, M. (2016). How reliable are centrality measures for data collected from fragmentary and heterogeneous historical sources? A case study. In T. Brughmans, A. Collar, & F. Coward (eds.), The Connected Past: Challenges to Network Studies in Archaeology and History, Oxford: Oxford University Press, 85-101. http://hdl.handle.net/10993/31309Earley-Spadoni, T. (2015). Landscapes of warfare: Intervisibility analysis of Early Iron and Urartian fire beacon stations (Armenia). Journal of Archaeological Science: Reports, 3, 22-30. http://dx.doi.org/10.1016/j.jasrep.2015.05.008Ferreira-Lopes, P. (2015). La producción del sistema ferroviario. Hacia una IDE histórica del patrimonio ferroviario de Andalucía. Virtual Archaeology Review Journal, 13, 41-50. https://doi.org/10.4995/var.2015.4371Ferreira-Lopes, P., & Molina Rozalen, J. F. (2018). Historical SDI, thematic maps and analysis of a complex network of medieval towers (13th-15th century) in the Moorish Strip. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 177-183. https://doi.org/10.5194/isprs-archives-XLII-4-177-2018Ferreira-Lopes, P., & Pinto Puerto, F. (2018). GIS and graph models for social, temporal and spatial digital analysis in heritage: The case-study of Ancient Kingdom of Seville Late Gothic production. Digital Application in Archaeology and Cultural Heritage, 9, 1-14. https://doi.org/10.1016/j.daach.2018.e00074Garrec, T. (2019). Continuous patrolling and hiding games. European Journal of Operational Research, 277, 42-51. https://doi.org/10.1016/j.ejor.2019.02.026Jahjah, M., Ulivieri, C., Invernizzi, A., & Parapetti, R. (2007). Archaeological remote sensing application pre-post war situation of Babylon archaeological site-Iraq. Acta Astronautica, 61(1-6), 121-130. https://doi.org/10.1016/j.actaastro.2007.01.034Liceras-Garrido, R., Favila-Vázquez, M., Bellamy, K., Murrieta-Flores, P., Jiménez Badillo, D., & Martins, B. (2019). Digital Approaches to Historical Archaeology: Exploring the Geographies of 16th Century New Spain. Journal of Archaeology and Anthropology, 2(1). https://doi.org/10.33552/OAJAA.2019.02.000526Llobera, M. (2007). Reconstruction visual landscapes. World Archaeology, 39(1), 51-69. https://doi.org/10.1080/00438240601136496Lock, G., & Pouncett, J. (2017). Spatial thinking in archaeology: Is GIS the answer? Journal of Archaeological Science, 84, 129-135. http://dx.doi.org/10.1016/j.jas.2017.06.002Luo, L., Wang, X., & Cai, H. (2014). An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China. IOP Conference Series: Earth and Environmental Science, 17(1), 012165. https://doi.org/10.1088/1755-1315/17/1/012165Martín, G. (2017). Aproximación al estudio de tres fuertes de las guerras carlistas en el entorno de Bilbao. Arkeogazte, 7, 193-220.Martín, G. (2019). Defendiendo la "Invicta Villa". La línea de Bilbao y su ría y Abra durante la Última Guerra Carlista (1872-1876). Vasconia, 43, 33-73.Martindale, A, & Supernant, K. (2009). Quantifying the defensiveness of defended sites on the Northwest Coast of North America. Journal of Anthropological Archaeology, 28,191-204. http://dx.doi.org/10.1016/j.jaa.2009.01.001Mullins, P. (2016). Webs of defense: Structure and meaning of defensive visibility networks in Prehispanic Peru. Journal of Archaeological Science: Reports, 8, 346-355. https://doi.org/10.1016/j.jasrep.2016.05.022Murphy, K. M., Gittings, B., & Crow, J. (2018). Visibility analysis of the Roman communication network in southern Scotland. Journal of Archaeological Science: Reports, 17, 111-124. https://doi.org/10.1016/j.jasrep.2017.10.047Murrieta-Flores, P. (2012). Understanding human movement through spatial technologies. The role of natural areas of transit in the Late Prehistory of South-western Iberia. Trabajos de Prehistoria, 69(1), 103-122. https://doi.org/10.3989/tp.2012.12082Peeples, M. A. (2019). Finding a Place for Network in Archaeology. Journal of Archaeological Research, 27, 451-499. https://doi.org/10.1007/s10814-019-09127-8Prieto, A. J., Ortiz, R., Macías-Bernal, J. M., Chávez, M. J., & Ortiz, P. (2020). Artificial intelligence applied to the preventive conservation of heritage buildings. In P. Ortiz, F. Pinto, P. Verhagen, & A. J. Prieto (Eds.), Science and Digital Technology for Cultural Heritage - Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models. Proceedings of the 4th International Congress Science and Technology for the Conservation of Cultural Heritage (TechnoHeritage 2019), March 26-30, 2019, Sevilla, Spain (pp. 245-249). London: CRC Press. https://doi.org/10.1201/9780429345470-45Quesada-García, S., & Romero-Vergara, G. (2019). El sistema de torres musulmanas en tapial de la Sierra de Segura (Jaén). Una contribución al estudio del mundo rural y el paisaje de al-Andalus. Arqueología de la Arquitectura, 16, e079. https://doi.org/10.3989/arq.arqt.2019.001Richards-Risseto, H. (2017). What can GIS + 3D mean for landscape archaeology? Journal of Archaeological Science, 84, 10-21. http://dx.doi.org/10.1016/j.jas.2017.05.005Rinaudo, F., & Devoti, C. (2013). GIS and land history: the documentation of the ancient Aosta dukedom. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W1, 265-270. https://doi.org/10.5194/isprsannals-II-5-W1-265-2013Roldán, I., & Escribano, S. (2015). Arqueología del Conflicto Carlista. Valoración del legado material de varios fuertes del Frente de Estella. Arkeogazte, 5, 133-149.Roldán, I., & Escribano, S. (2017). Programa de investigación del patrimonio de las guerras carlistas en Navarra. Primeras intervenciones. Trabajos de arqueología navarra, 29, 281-289.Roldán, I., Martín, G., & Escribano, S. (2019). The archaeology of civil conflict in nineteenth century Spain: material, social and mnemonic consequences of the Carlist Wars. World Archaeology, 51(5), 709-723. https://doi.org/10.1080/00438243.2020.1741441Rua, H., Gonçalves, A.B., & Figueiredo, F. (2013). Assessment of the Lines of Torres Vedras defensive system with visibility analysis. Journal of Archaeological Science, 40, 2113-2123. http://dx.doi.org/10.1016/j.jas.2012.12.012Rupp, C. J., Rayson,P., Gregory,I., Hardie, A., Joulain, A., & Hartmann, D. (2014). Dealing with heterogeneous big data when geoparsing historical corpora. IEEE International Conference on Big Data (Big Data) (pp. 80-83). Washington DC, United States of America. https://doi.org/10.1109/BigData.2014.7004457Scott, D., & McFeater, A. (2011). The archaeology of historic battlefields: a history and theoretical development. Conflict Archaeology. Journal of Archaeological Research, 19, 103-132. https://doi.org/10.1007/s10814-010-9044-8Suárez, J. L., & Sancho-Caparrini, F. (2016). Nuevas Tecnologías y Patrimonio: más allá de la digitalización. El caso del "Hispanic Baroque Project". Retrieved August 31, 2020, from http://www.cs.us.es/~fsancho/?e=27Trapero Fernández, P. (2016). Roman viticulture analysis based on Latin agronomists and the application of a geographic information system in Lower Guadalquivir. Virtual Archaeology Review, 7(14), 53-60. http://dx.doi.org/var.2016.4481Verhagen, P., Nuninger, L., & Groenhuijzen, M. (2019). Modelling of pathways and movement networks in archaeology: an overview of current approaches. In P. Verhagen et al. (Eds.), Finding the Limits of the Limes, Computational Social Sciences. Computational Social Sciences (pp. 217-249). Cham: Springer. https://doi.org/10.1007/978-3-030-04576-0_11Verhagen, P., Nuninger, L., Tourneux, F. P., Bertoncello, F., & Jeneson, K. (2013). Introducing the human factor in predictive modelling: a work in progress. In CAA 2012. Archaeology in the digital era. Papers from the 40th annual conference of computer applications and quantitative methods in archaeology, Southampton, 26-29 March 2012 (pp. 379-388). Amsterdam: Amsterdam University Press. https://doi.org/10.1515/9789048519590-041Villalba, D., & Bueno, Y. (2012). Decisiones empresariales con hoja de cálculo. Madrid, Spain: Pirámide.Whitley, T. G. (2017). Geospatial analysis as experimental archaeology. Journal of Archaeological Science, 84, 113-114. http://dx.doi.org/10.1016/j.jas.2017.05.00

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; García-Bartual, R.; Huber, B.; Bayón, A.; Vallés-Morán, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    A bibliometric analysis of the Journal of Molecular Graphics and Modelling

    Get PDF
    This paper reviews the articles published in Volumes 2-24 of the Journal of Molecular Graphics and Modelling (formerly the Journal of Molecular Graphics), focusing on the changes that have occurred in the subject over the years, and on the most productive and most cited authors and institutions. The most cited papers are those describing systems or algorithms, but the proportion of these types of article is decreasing as more applications of molecular graphics and molecular modelling are reported

    Bibliometric studies on single journals: a review

    Get PDF
    This paper covers a total of 82 bibliometric studies on single journals (62 studies cover unique titles) published between 1998 and 2008 grouped into the following fields; Arts, Humanities and Social Sciences (12 items); Medical and Health Sciences (19 items); Sciences and Technology (30 items) and Library and Information Sciences (21 items). Under each field the studies are described in accordance to their geographical location in the following order, United Kingdom, United States and Americana, Europe, Asia (India, Africa and Malaysia). For each study, elements described are (a) the journal’s publication characteristics and indexation information; (b) the objectives; (c) the sampling and bibliometric measures used; and (d) the results observed. A list of journal titles studied is appended. The results show that (a)bibliometric studies cover journals in various fields; (b) there are several revisits of some journals which are considered important; (c) Asian and African contributions is high (41.4 of total studies; 43.5 covering unique titles), United States (30.4 of total; 31.0 on unique titles), Europe (18.2 of total and 14.5 on unique titles) and the United Kingdom (10 of total and 11 on unique titles); (d) a high number of bibliometrists are Indians and as such coverage of Indian journals is high (28 of total studies; 30.6 of unique titles); and (e) the quality of the journals and their importance either nationally or internationally are inferred from their indexation status

    Filling a gap: would evidence-based school librarianship work in the UK?

    Get PDF
    School librarians in the UK have a lower status than librarians in other sectors, and research on school librarianship in the UK is sparse. Annual self-evaluation is one way the profession has tried to make itself more visible. Evidence-based school librarianship (EBSL) could assist school librarians in the UK improve their services, boost their profile, and build their portfolios as part of existing self-evaluation programmes. EBSL is an off-shoot of evidence-based librarianship, which aims to bridge the gap between research and practice, and encourages practitioners to conduct research in the workplace. Most of the current EBSL work is being done in the US, where school librarians are also typically trained teachers, however, EBSL is suitable for adaptation and use in the UK. Appropriate research methods must be chosen in order to make EBSL work in the UK, action research being one such method

    Publications on Chronic Disease in Coal Dependent Communities in Central Appalachia

    Full text link
    CONTEXT: Agency and nonprofit reports have traditionally been the source of health information in Appalachia. Recently, publications have appeared in the literature associating coal mining, specifically mountain top mining, with numerous chronic health conditions spurring debate among environmental and industry interest groups. Publication quantity and quality were objectively assessed. This article reports on a literature review and analysis of publications on chronic disease in coal dependent communities in Appalachia. OBJECTIVE: To conduct a review and analysis of original, peer reviewed research publications on chronic health conditions in communities dependent on coal mining with a focus on central Appalachia and report on publication and research quantity and quality. DATA SOURCES: Thorough searches were conducted using PubMed, EBSCO, and CiNAHL computerized databases to identify original, peer-reviewed research articles addressing ‘Appalachia’, ‘health’ and ‘coal’. STUDY SELECTION: The computerized database search identified original research publications relevant to chronic health conditions (heart disease, lung disease, kidney disease, cancers, diabetes, obesity, etc.) and coal mining in central Appalachia. DATA EXTRACTION: Quantitative measures of the literature review provided information on author collaborations, year of publication, frequency of publication by contributing authors, etc. Journal impact factors were noted and other objective qualitative criteria were considered. DATA SYNTHESIS: Over 60 publications relevant to mining with 38 publications specific to Appalachia and health were identified. The publications were reviewed relative to relevance and article quality i.e., current, original research, application to central Appalachia and discussions of chronic human health and coal mining. Over the past five years most of the publications relevant to chronic disease and coal mining in central Appalachia resulted from a research group with a single common author. CONCLUSIONS: Science based evidence is needed and data must be provided by independent researchers from various disciplines of study to share different perspectives on how to alleviate the longstanding health disparities in central Appalachia. Studies will require the application of sound methodologies to validate the findings and support future interventions
    corecore