822,618 research outputs found

    An Agent-based Strategy for Deploying Analysis Models into Specification and Design for Distributed APS Systems

    Get PDF
    Despite the extensive use of the agent technology in the Supply Chain Management field, its integration with Advanced Planning and Scheduling (APS) tools still represents a promising field with several open research questions. Specifically, the literature falls short in providing an integrated framework to analyze, specify, design and implement simulation experiments covering the whole simulation cycle. Thus, this paper proposes an agent-based strategy to convert the 'analysis' models into 'specification' and 'design' models combining two existing methodologies proposed in the literature. The first one is a recent and unique approach dedicated to the 'analysis' of agent-based APS systems. The second one is a well-established methodological framework to 'specify' and 'design' agent-based supply chain systems. The proposed conversion strategy is original and is the first one allowing simulation analysts to integrate the whole simulation development process in the domain of distributed APS.Comment: In: International Journal of Computer Science Issues, Volume 8, Issue 3, May 2011, p.7-18, ISSN 1694-081

    Partial Correctness of a Power Algorithm

    Get PDF
    This work continues a formal verification of algorithms written in terms of simple-named complex-valued nominative data [6],[8],[15],[11],[12],[13]. In this paper we present a formalization in the Mizar system [3],[1] of the partial correctness of the algorithm: i := val.1 j := val.2 b := val.3 n := val.4 s := val.5 while (i n) i := i + j s := s * b return s computing the natural n power of given complex number b, where variables i, b, n, s are located as values of a V-valued Function, loc, as: loc/.1 = i, loc/.3 = b, loc/.4 = n and loc/.5 = s, and the constant 1 is located in the location loc/.2 = j (set V represents simple names of considered nominative data [17]).The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2],[4] with partial pre- and post-conditions [14],[16],[7],[5].Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science, 19(19–32), 1967.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576–580, 1969.Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716–724, 2018.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur Korniłowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–158, 2018. doi:10.2478/forma-2018-0012.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159–164, 2018. doi:10.2478/forma-2018-0013.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy Świątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer, 2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8_16.Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504–523. CEUR-WS.org, 2017.Artur Korniłowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5_18.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.27218919

    Recognize Geometry Shapes through Computer Learning in Early Math Skills

    Get PDF
    One form of early mathematical recognition is to introduce the concept of geometric shapes. Geometry is an important scientific discipline for present and future life by developing various ways that fit 21st century skills. This study aims to overcome the problem of early mathematical recognition of early childhood on geometry, especially how to recognize geometric forms based on computer learning. A total of 24 children aged 4-5 years in kindergarten has to carrying out 2 research cycles with a total of 5 meetings. Treatment activities in each learning cycle include mentioning, grouping and imitating geometric shapes. There were only 7 children who were able to recognize the geometric shapes in the pre-research cycle (29.2%). An increase in the number of children who are able to do activities well in each research cycle includes: 1) The activities mentioned in the first cycle and 75% in the second cycle; 2) Classifying activities in the first cycle were 37.5% and 75% in the second cycle; 3) Imitation activities in the first cycle 54.2% and 79.2% in the second cycle. The results of data acquisition show that computer learning application can improve the ability to recognize geometric shapes, this is because computer learning provides software that has activities to recognize geometric shapes with the animation and visuals displayed. Keywords: Early Childhood Computer Learning, Geometry Forms, Early Math Skills Reference Alia, T., & Irwansyah. (2018). Pendampingan Orang Tua pada Anak Usia Dini dalam Penggunaan Teknologi Digital. A Journal of Language, Literature, Culture and Education, 14(1), 65– 78. https://doi.org/10.19166/pji.v14i1.639 Ameliola, S., & Nugraha, H. D. (2013). Perkembangan Media Informasi dan Teknologi Terhadap Anak di Era Globalisasi. International Conferences in Indonesian Studies : “Etnicity and Globalization.” Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman. Arikunto, S. (2010). Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta: Asdi Mahasatya. Arsyad, N., Rahman, A., & Ahmar, A. S. (2017). Developing a self-learning model based on open-ended questions to increase the students’ creativity in calculus. Global Journal of Engineering Education, 19(2), 143–147. https://doi.org/10.26858/gjeev19i2y2017p143147 Asiye, I., Ahmet, E., & Abdullah, A. (2018). Developing a Test for Geometry and Spatial Perceptions of 5-6 Year-Old. Kastamonu Education Journal, 26(1). Aslan, D., & Yasare, A. (2007). Three to Six Years OldChildren’s Recognition of Geometric Shapes. International Journal of Early Years Education, 15 :1, 83–104. Ben-Yehoshua, D., Yaski, O., & Eilam, D. (2011). Spatial behavior: the impact of global and local geometry. Animal Cognition Journal, 13(3), 341–350. https://doi.org/10.1007/s10071- 010-0368-z Charlesworth, R., & Lind, K. K. (2010). Math and Sciend for Young Children. Canada: Wadsworth/Cengage Learning. Chen, J.-Q., & Chang, C. (2006). using computers in early childhood classrooms teachers’ attitudes,skills and practices. Early Childhood Research. Clements, D. H., & Samara. (2003). Strip mining for gold: Research and policy in educational technology—a response to “Fool’s Gold.” Association for the Advancement of Computing in Education (AACE) Journal, 11(1), 7–69. Cohen, L., & Manion, L. (1994). Research Methods in Education (fourth edi). London: Routledge. Conorldi, C., Mammarela, I. C., & Fine, G. G. (2016). Nonverbal Learning Disability (J. P. Guilford, Ed.). New York. Corey, S. M. (1953). Action Research to Improve School Practice. New York: Teachers College, Columbia University. Couse, L. J., & Chen, D. W. (2010). A tablet computer for young children? Exploring its viability for early childhood education. Journal of Research on Technology in Education, 43(1), 75– 98. https://doi.org/10.1080/15391523.2010.10782562 Delima, R., Arianti, N. K., & Pramudyawardani, B. (2015). Identifikasi Kebutuhan Pengguna Untuk Aplikasi Permainan Edukasi Bagi Anak Usia 4 sampai 6 Tahun. Jurnal Teknik Informatika Dan Sistem Informasi, 1(1). Depdiknas. (2007). Permainan Berhitung Permulaan Di Taman Kanak-kanak. In Pedoman Pembelajaran. Jakarta: Depdiknas. Djadir, Minggi, I., Ja’faruddin., Zaki, A., & Sidjara, S. (2017). Sumber Belajar PLPG 2017: Bangun Datar. In Modul PLPG. Jakarta: Kementrian Pendidikan dan Kebudayaan Direktorat Jenderal Guru dan Tenaga Kependidikan.Dooley, T., Dunphy, E., & Shiel, G. (2014). Mathematics in Early Childhood and Primary Education (3-8 years). Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428 Duncan, G. J., & Magnuson, K. (2011). The nature and impact of early achievement skills, attention skills, and behavior problems. Whither Opportunity?: Rising Inequality, Schools, and Children’s Life Chances, (0322356), 47–69. Edwards, S. (2009). Early Childhood Education and Care: a sociocultural Approach. New South Wales: Pademelon Press. Feliyanah, Norman, S., & Yulidesni. (2014). Meningkatkan Kemampuan Matematika dengan Menggunakan Teknik Mengurutkan dan Membandingkan. Universitas Bengkulu. Gardner, H. (2011). Frame of Mind ; The theory of Multiple Intelegences. New York: Basic Book. Gimbert, B., & Cristol, D. (2004). Teaching Curriculum with Technology: Enhancing Children’s Technological Competence During Early Childhood. Early Childhood Education Journal, 31(1). Gulay, H. (2011a). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252. Gulay, H. (2011b). The evaluation of the relationship between the computer using habits and proso_cial and aggressive behaviours of 5–6 years old children. International Journal of Academic Research, 3(2), 252–257. Gunawan, I., & Palupi, A. R. (2012). Taksonomi Bloom-Revisi Ranah Kognitif; Kerangka Landasan untuk Pembelajaran, Pengajaran, dan Penilaian. Jurnal Pendidikan Dasar Dan Pembelajaran, 2 No.2, 100–108. Inan, H. Z., & Dogan-Temur, O. (2010). Understanding kindergarten teachers’ perspectives of teaching basic geometric shapes: A phenomenographic research. ZDM - International Journal on Mathematics Education, 42(5), 457–468. https://doi.org/10.1007/s11858-010- 0241-1 Jackman, H. I., Beaver, N. H., & Wyatt, S. S. (2014). Early Childhood Curriculum: A child’s connection to the world. (sixth edit). Canada: Cengage Learning. Kennedy, L. M., Tipps, S., & Johnson, A. (2008). Guiding Children’s Learning of Mathematic (Eleventh E; Belmot, Ed.). CA: Thomson Wadsworth. Mackintosh, B. B., & McCoy, D. C. (2019). Exploring Social Competence as a Mediator of Head Start’s Impact on Children’s Early Math Skills: Evidence from the Head Start Impact Study. Early Education and Development, 30(5), 655–677. https://doi.org/10.1080/10409289.2019.1576156 Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2011). Results in Science. Mirawati. (2017). Matematika Kreatif; Pembelajaran Matematika bagi Anak Usia Dini Melalui Kegiatan yang Menyenangkan dan Bermakna. Jurnal Anak Usia Dini Dan Pendidikan Anak Usia Dini, 3. Mohammad, M., & Mohammad, H. (2012). Computer integration into the early childhood curriculum. Education, 133(1), 97–116. National Research Council. (2009). Mathematics Learning in Early Chidhood Paths Toward Excellence and Equity (C. T. Cross, T. Woods, & H. Schweingruber, Eds.). Washinton D.C: The National Academies Press. Norton, A., & Nurnberger-Haag, J. (2018). Bridging frameworks for understanding numerical cognition. Journal of Numerical Cognition, 4(1), 1–8. https://doi.org/10.5964/jnc.v4i1.160 Novitasari, D. R. (2010). Pembangunan Media Pembelajaran Bahasa Inggris Untuk Siswa Kelas 1 Pada Sekolah Dasar Negeri 15 Sragen. Sentra Penelitian Engineering Dan Edukas, Volume 2 N. Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2017). Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education. Early Childhood Education Journal, 45(3), 369–378. https://doi.org/10.1007/s10643-015-0768-4 Papalia, Old, & Feldman. (2009). Human Development (Psikologi Perkembangan (Kesembilan). Jakarta: Kencana. Paquette, K. R., Fello, S. E., & Jalongo, M. R. (2007). The talking drawings strategy: Using primary children’s Illustrations and oral language to improve comprehension of expository text. Early Childhood Education Journal, 35(1), 65–73. https://doi.org/10.1007/s10643- 007-0184-5 Putra, L. D., & Ishartiwi. (2015). Pengembangan Multimedia Pembelajaram Interaktif Mengenal Angka dan Huruf untuk Anak Usia Dini. Jurnal Inovasi Teknologi Pendidikan, 2(2). Rich, B., & Thomas, C. (2009). Geometry: Includes Plane, Analytic, and Transformational Geometries. . (4th Editio). New York: McGraw-Hill. Rochanah, L. (2016). Pemanfaatan Media Berbasis Komputer Untuk Meningkatkan Kemampuan Huruf pada Anak Usia Dini (Urgensi Media Berbasis Komputer pada Peningkatan Kemampuan Mengenal Huruf ). Jurnal Program Studi PGRA, Volume 2 N, 1–8. Runtukahu, T., & Kandou, S. (2014). Pembelajaran matematika dasar bagi anak berkesulitan belajar. Yogyakarta: Ar-ruzz Media. Santrock, J. W. (2016). Children (Thirteenth). New York: McGraw-Hill Education. Sarama, J., & Clements, D. H. (2006). Mathematics, Young Students, and Computers: Software, Teaching Strategies and Professional Development. The Mathematics Educato, 9(2), 112– 134. Schoenfeld, A. H., & Stipek, D. (2011). Math Matters. Barkeley, California.Shilpa, S., & Sunita, M. (2013). A Study About Role of Multimedia in Early Childhood Education. International Journal of Humanities and Social Science Invention, 2(6). Siswono, T. Y. E. (2012). Belajar dan Mengajar Matematika Anak Usia Dini. Universitas Negeri Surabaya.Smaldino, S. E., Russel, J. D., & Lowther, D. L. (2014). Instructional Technology & Media for Learning (9th ed.). Jakarta: Kencana Prenada Media Group. Sudaryanti. (2006). Pengenalan Matematika Anak Usia Dini. Yogyakarta: FIP UNY. Sufa, F. F., & Setiawan, H. Y. (2017). Analisis Kebutuhan Anak Usia 4-6 Tahun Pada Pembelajaran Berbasis Komputer Pada Anak Usia Dini. Research Fair Unisri, 1(1). Suharjana, A. (2008). Pengenalan Bangun Ruang dan Sifat-sifatnya di SD. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika. Sujiono, Y . N. (2014). Batasan dan Dasar T eori Pengembangan Kognitif. In Hakikat Pengembangan Kognitif (p. 12). Suryana, D. (2013). Pendidikan Anak Usia Dini (teori dan praktik pembelajaran). Padang: UNP Press. Susperreguy, M. I., & Davis-Kean, P. E. (2016). Maternal Math Talk in the Home and Math Skills in Preschool Children. Early Education and Development, 27(6), 841–857. https://doi.org/10.1080/10409289.2016.1148480 Suwarna. (2010). Pengembangan Multimedia Pembelajaran untuk Pembinaan Kreativitas Melukis di Taman Kanak-kanak. Jurnal Universitas Negeri Yogyakarta. Suziedelyte, A. (2012). Can video games affect children’s cognitive and non-cognitive skills? UNSW Australian School of Business Research Paper. https://doi.org/10.2139/ssrn.2140983 Tarigan, D. (2006). Pembelajaran Matematika Realistik. Jakarta: Departeman Pendidikan Nasional, Direktorat Jendral Pendidikan Tunggi, Direktorat Pembinaan Pendidikan Tenaga Kependidikan dan Ketenaga Perguruan Tinggi. Tatang, S. (2012). Ilmu Pendidikan. Bandung: Pustaka Setia.Trawick, M. (2007). Enemy Line ; Warfare, Childhood, and Play in Batticaloa. London: University of California Press. Trifunović, A., Čičević, S., Lazarević, D., Mitrović1, S., & Dragovi, M. (2018). Comparing Tablets (Touchscreen Devices and PCs in Preschool Children Education: Testing Spatial Relationship Using Geometric Syimbols Traffic Signs. IETI Transections on Economics and Safety, 2(1), 35–41. https://doi.org/10.6722/TES.201808_2(1).0004 Vitianingsih, A. V. (2016). Game Edukasi Sebagai Media Pembelajaran Pendidikan Anak Usia Dini. Jurnal INFORM, 1 No. 1. Wang, F., & Kinzie, M. B. (2010). Applying Technology to Inquiry- Based Learning in Early Childhood Education. Early Childhood Education Journal. Weil, M., Calhoun, E., & Joyce, B. (2011). Models of Teaching. New York.: New York. Zack, N. (2014). Philosophy of Science and Race. New York: Routledge. Zare, Sarikhani, Salarii, & Mansouri. (2016). The Impact Of E-learning on University Student’s Academic Achievement and Creativity. Journal of Technical Education and Training (JTET), 8(11)

    On an Algorithmic Algebra over Simple-Named Complex-Valued Nominative Data

    Get PDF
    This paper continues formalization in the Mizar system [2, 1] of basic notions of the composition-nominative approach to program semantics [14] which was started in [8, 12, 10].The composition-nominative approach studies mathematical models of computer programs and data on various levels of abstraction and generality and provides tools for reasoning about their properties. In particular, data in computer systems are modeled as nominative data [15]. Besides formalization of semantics of programs, certain elements of the composition-nominative approach were applied to abstract systems in a mathematical systems theory [4, 6, 7, 5, 3].In the paper we give a formal definition of the notions of a binominative function over given sets of names and values (i.e. a partial function which maps simple-named complex-valued nominative data to such data) and a nominative predicate (a partial predicate on simple-named complex-valued nominative data). The sets of such binominative functions and nominative predicates form the carrier of the generalized Glushkov algorithmic algebra for simple-named complex-valued nominative data [15]. This algebra can be used to formalize algorithms which operate on various data structures (such as multidimensional arrays, lists, etc.) and reason about their properties.In particular, we formalize the operations of this algebra which require a specification of a data domain and which include the existential quantifier, the assignment composition, the composition of superposition into a predicate, the composition of superposition into a binominative function, the name checking predicate. The details on formalization of nominative data and the operations of the algorithmic algebra over them are described in [11, 13, 9].Ievgen Ivanov - Taras Shevchenko National University, Kyiv, UkraineArtur Korniłowicz - Institute of Informatics, University of Białystok, PolandMykola Nikitchenko - Taras Shevchenko National University, Kyiv, UkraineGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Ievgen Ivanov. On the underapproximation of reach sets of abstract continuous-time systems. In Erika Ábrahám and Sergiy Bogomolov, editors, Proceedings 3rd International Workshop on Symbolic and Numerical Methods for Reachability Analysis, SNR@ETAPS 2017, Uppsala, Sweden, 22nd April 2017, volume 247 of EPTCS, pages 46–51, 2017. doi:10.4204/EPTCS.247.4.Ievgen Ivanov. On representations of abstract systems with partial inputs and outputs. In T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation – 11th Annual Conference, TAMC 2014, Chennai, India, April 11–13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages 104–123. Springer, 2014. ISBN 978-3-319-06088-0. doi:10.1007/978-3-319-06089-7_8.Ievgen Ivanov. On local characterization of global timed bisimulation for abstract continuous-time systems. In Ichiro Hasuo, editor, Coalgebraic Methods in Computer Science – 13th IFIP WG 1.3 International Workshop, CMCS 2016, Colocated with ETAPS 2016, Eindhoven, The Netherlands, April 2–3, 2016, Revised Selected Papers, volume 9608 of Lecture Notes in Computer Science, pages 216–234. Springer, 2016. ISBN 978-3-319-40369-4. doi:10.1007/978-3-319-40370-0_13.Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. On a decidable formal theory for abstract continuous-time dynamical systems. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, pages 78–99. Springer International Publishing, 2014. ISBN 978-3-319-13206-8. doi:10.1007/978-3-319-13206-8_4.Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. Event-based proof of the mutual exclusion property of Peterson’s algorithm. Formalized Mathematics, 23(4):325–331, 2015. doi:10.1515/forma-2015-0026.Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur Korniłowicz. Simple-named complex-valued nominative data – definition and basic operations. Formalized Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59–76, 2018.Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018. doi:10.2478/forma-2018-0011.Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.Artur Korniłowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar. In Jerzy Świątek, Leszek Borzemski, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017: Part II, pages 176–186. Springer International Publishing, 2018. ISBN 978-3-319-67229-8. doi:10.1007/978-3-319-67229-8_16.Nikolaj S. Nikitchenko. A composition nominative approach to program semantics. Technical Report IT-TR 1998-020, Department of Information Technology, Technical University of Denmark, 1998.Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications – 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8_6.26214915

    Automatic classification of human facial features based on their appearance

    Full text link
    [EN] Classification or typology systems used to categorize different human body parts have existed for many years. Nevertheless, there are very few taxonomies of facial features. Ergonomics, forensic anthropology, crime prevention or new human-machine interaction systems and online activities, like e-commerce, e-learning, games, dating or social networks, are fields in which classifications of facial features are useful, for example, to create digital interlocutors that optimize the interactions between human and machines. However, classifying isolated facial features is difficult for human observers. Previous works reported low inter-observer and intra-observer agreement in the evaluation of facial features. This work presents a computer-based procedure to automatically classify facial features based on their global appearance. This procedure deals with the difficulties associated with classifying features using judgements from human observers, and facilitates the development of taxonomies of facial features. Taxonomies obtained through this procedure are presented for eyes, mouths and noses.Fuentes-Hurtado, F.; Diego-Mas, JA.; Naranjo Ornedo, V.; Alcañiz Raya, ML. (2019). Automatic classification of human facial features based on their appearance. PLoS ONE. 14(1):1-20. https://doi.org/10.1371/journal.pone.0211314S120141Damasio, A. R. (1985). Prosopagnosia. Trends in Neurosciences, 8, 132-135. doi:10.1016/0166-2236(85)90051-7Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. doi:10.1111/j.2044-8295.1986.tb02199.xTodorov, A. (2011). Evaluating Faces on Social Dimensions. Social Neuroscience, 54-76. doi:10.1093/acprof:oso/9780195316872.003.0004Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18-27. doi:10.1016/j.evolhumbehav.2006.09.002Porter, J. P., & Olson, K. L. (2001). Anthropometric Facial Analysis of the African American Woman. Archives of Facial Plastic Surgery, 3(3), 191-197. doi:10.1001/archfaci.3.3.191Gündüz Arslan, S., Genç, C., Odabaş, B., & Devecioğlu Kama, J. (2007). Comparison of Facial Proportions and Anthropometric Norms Among Turkish Young Adults With Different Face Types. Aesthetic Plastic Surgery, 32(2), 234-242. doi:10.1007/s00266-007-9049-yFerring, V., & Pancherz, H. (2008). Divine proportions in the growing face. American Journal of Orthodontics and Dentofacial Orthopedics, 134(4), 472-479. doi:10.1016/j.ajodo.2007.03.027Mane, D. R., Kale, A. D., Bhai, M. B., & Hallikerimath, S. (2010). Anthropometric and anthroposcopic analysis of different shapes of faces in group of Indian population: A pilot study. Journal of Forensic and Legal Medicine, 17(8), 421-425. doi:10.1016/j.jflm.2010.09.001Ritz-Timme, S., Gabriel, P., Tutkuviene, J., Poppa, P., Obertová, Z., Gibelli, D., … Cattaneo, C. (2011). Metric and morphological assessment of facial features: A study on three European populations. Forensic Science International, 207(1-3), 239.e1-239.e8. doi:10.1016/j.forsciint.2011.01.035Ritz-Timme, S., Gabriel, P., Obertovà, Z., Boguslawski, M., Mayer, F., Drabik, A., … Cattaneo, C. (2010). A new atlas for the evaluation of facial features: advantages, limits, and applicability. International Journal of Legal Medicine, 125(2), 301-306. doi:10.1007/s00414-010-0446-4Kong, S. G., Heo, J., Abidi, B. R., Paik, J., & Abidi, M. A. (2005). Recent advances in visual and infrared face recognition—a review. Computer Vision and Image Understanding, 97(1), 103-135. doi:10.1016/j.cviu.2004.04.001Tavares, G., Mourão, A., & Magalhães, J. (2016). Crowdsourcing facial expressions for affective-interaction. Computer Vision and Image Understanding, 147, 102-113. doi:10.1016/j.cviu.2016.02.001Buckingham, G., DeBruine, L. M., Little, A. C., Welling, L. L. M., Conway, C. A., Tiddeman, B. P., & Jones, B. C. (2006). Visual adaptation to masculine and feminine faces influences generalized preferences and perceptions of trustworthiness. Evolution and Human Behavior, 27(5), 381-389. doi:10.1016/j.evolhumbehav.2006.03.001Boberg M, Piippo P, Ollila E. Designing Avatars. DIMEA ‘08 Proc 3rd Int Conf Digit Interact Media Entertain Arts. ACM; 2008; 232–239. doi: https://doi.org/10.1145/1413634.1413679Rojas Q., M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. PLoS ONE, 6(8), e23323. doi:10.1371/journal.pone.0023323Laurentini, A., & Bottino, A. (2014). Computer analysis of face beauty: A survey. Computer Vision and Image Understanding, 125, 184-199. doi:10.1016/j.cviu.2014.04.006Alemany S, Gonzalez J, Nacher B, Soriano C, Arnaiz C, Heras H. Anthropometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies. 2010. pp. 307–315.Vinué, G., Epifanio, I., & Alemany, S. (2015). Archetypoids: A new approach to define representative archetypal data. Computational Statistics & Data Analysis, 87, 102-115. doi:10.1016/j.csda.2015.01.018Jee, S., & Yun, M. H. (2016). An anthropometric survey of Korean hand and hand shape types. International Journal of Industrial Ergonomics, 53, 10-18. doi:10.1016/j.ergon.2015.10.004Kim, N.-S., & Do, W.-H. (2014). Classification of Elderly Women’s Foot Type. Journal of the Korean Society of Clothing and Textiles, 38(3), 305-320. doi:10.5850/jksct.2014.38.3.305Sarakon P, Charoenpong T, Charoensiriwath S. Face shape classification from 3D human data by using SVM. The 7th 2014 Biomedical Engineering International Conference. IEEE; 2014. pp. 1–5. doi: https://doi.org/10.1109/BMEiCON.2014.7017382PRESTON, T. A., & SINGH, M. (1972). Redintegrated Somatotyping. Ergonomics, 15(6), 693-700. doi:10.1080/00140137208924469Lin, Y.-L., & Lee, K.-L. (1999). Investigation of anthropometry basis grouping technique for subject classification. Ergonomics, 42(10), 1311-1316. doi:10.1080/001401399184965Malousaris, G. G., Bergeles, N. K., Barzouka, K. G., Bayios, I. A., Nassis, G. P., & Koskolou, M. D. (2008). Somatotype, size and body composition of competitive female volleyball players. Journal of Science and Medicine in Sport, 11(3), 337-344. doi:10.1016/j.jsams.2006.11.008Carvalho, P. V. R., dos Santos, I. L., Gomes, J. O., Borges, M. R. S., & Guerlain, S. (2008). Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays, 29(3), 273-284. doi:10.1016/j.displa.2007.08.010Fabri M, Moore D. The use of emotionally expressive avatars in Collaborative Virtual Environments. AISB’05 Convention:Proceedings of the Joint Symposium on Virtual Social Agents: Social Presence Cues for Virtual Humanoids Empathic Interaction with Synthetic Characters Mind Minding Agents. 2005. pp. 88–94. doi:citeulike-article-id:790934Sukhija, P., Behal, S., & Singh, P. (2016). Face Recognition System Using Genetic Algorithm. Procedia Computer Science, 85, 410-417. doi:10.1016/j.procs.2016.05.183Trescak T, Bogdanovych A, Simoff S, Rodriguez I. Generating diverse ethnic groups with genetic algorithms. Proceedings of the 18th ACM symposium on Virtual reality software and technology—VRST ‘12. New York, New York, USA: ACM Press; 2012. p. 1. doi: https://doi.org/10.1145/2407336.2407338Vanezis, P., Lu, D., Cockburn, J., Gonzalez, A., McCombe, G., Trujillo, O., & Vanezis, M. (1996). Morphological Classification of Facial Features in Adult Caucasian Males Based on an Assessment of Photographs of 50 Subjects. Journal of Forensic Sciences, 41(5), 13998J. doi:10.1520/jfs13998jTamir, A. (2011). Numerical Survey of the Different Shapes of the Human Nose. Journal of Craniofacial Surgery, 22(3), 1104-1107. doi:10.1097/scs.0b013e3182108eb3Tamir, A. (2013). Numerical Survey of the Different Shapes of Human Chin. Journal of Craniofacial Surgery, 24(5), 1657-1659. doi:10.1097/scs.0b013e3182942b77Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic Processing Predicts Face Recognition. Psychological Science, 22(4), 464-471. doi:10.1177/0956797611401753Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278. doi:10.1016/j.visres.2011.04.002Donnelly, N., & Davidoff, J. (1999). The Mental Representations of Faces and Houses: Issues Concerning Parts and Wholes. Visual Cognition, 6(3-4), 319-343. doi:10.1080/135062899395000Davidoff, J., & Donnelly, N. (1990). Object superiority: A comparison of complete and part probes. Acta Psychologica, 73(3), 225-243. doi:10.1016/0001-6918(90)90024-aTanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245. doi:10.1080/14640749308401045Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual Differences in Holistic Processing Predict Face Recognition Ability. Psychological Science, 23(2), 169-177. doi:10.1177/0956797611420575Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other-race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728. doi:10.1348/000712608x396503Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 101(2), 343-352. doi:10.1037/0033-295x.101.2.343Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18(4), 713-721. doi:10.3758/s13423-011-0101-1Meyers, E., & Wolf, L. (2007). Using Biologically Inspired Features for Face Processing. International Journal of Computer Vision, 76(1), 93-104. doi:10.1007/s11263-007-0058-8Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681-685. doi:10.1109/34.927467Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041. doi:10.1109/tpami.2006.244Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711-720. doi:10.1109/34.598228Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. doi:10.1162/jocn.1991.3.1.71Klare B, Jain AK. On a taxonomy of facial features. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. IEEE; 2010. pp. 1–8. doi: https://doi.org/10.1109/BTAS.2010.5634533Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A Survey of 2D Face Recognition Techniques. Computers, 5(4), 21. doi:10.3390/computers5040021Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods, 47(4), 1122-1135. doi:10.3758/s13428-014-0532-5Asthana A, Zafeiriou S, Cheng S, Pantic M. Incremental face alignment in the wild. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014. pp. 1859–1866. doi: https://doi.org/10.1109/CVPR.2014.240Bag S, Barik S, Sen P, Sanyal G. A statistical nonparametric approach of face recognition: combination of eigenface & modified k-means clustering. Proceedings Second International Conference on Information Processing. 2008. p. 198.Doukas, C., & Maglogiannis, I. (2010). A Fast Mobile Face Recognition System for Android OS Based on Eigenfaces Decomposition. Artificial Intelligence Applications and Innovations, 295-302. doi:10.1007/978-3-642-16239-8_39Huang P, Huang Y, Wang W, Wang L. Deep embedding network for clustering. Proceedings—International Conference on Pattern Recognition. 2014. pp. 1532–1537. doi: https://doi.org/10.1109/ICPR.2014.272Dizaji KG, Herandi A, Deng C, Cai W, Huang H. Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization. Proceedings of the IEEE International Conference on Computer Vision. 2017. doi: https://doi.org/10.1109/ICCV.2017.612Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis [Internet]. Proceedings of the 33rd International Conference on International Conference on Machine Learning—Volume 48. JMLR.org; 2016. pp. 478–487. Available: https://dl.acm.org/citation.cfm?id=3045442Nousi, P., & Tefas, A. (2017). Discriminatively Trained Autoencoders for Fast and Accurate Face Recognition. Communications in Computer and Information Science, 205-215. doi:10.1007/978-3-319-65172-9_18Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519. doi:10.1364/josaa.4.00051

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-Velásquez, FD.; España Cubillo, S.; Pastor López, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & Simão, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & Wüst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.Bézivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., Gómez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., Género, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ramos, I., & Fernández, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas Informíticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .González, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.González, C.A., Büttner, F., Clarisó, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.Goulão, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & Valdés, A.P. (2012). Una introducción al desarrollo de software dirigido por modelos. Serie Científica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & Marqués, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures

    Full text link
    [EN] Finite element method has been employed to establish the feasibility of a fixation plate made of PLA by additive manufacturing for femoral shaft fractures. For this purpose, Von Mises stress and the pressure contact between bones had been analysed. The proposed design has been compared with an actual titanium fixation plate as a point of reference.J. Ivorra-Martinez is funded with a Formación de Profesorado Universitario (FPU) grant from the Spanish Government (Ministerio de Ciencia, Innovación y Universidades), with reference FPU19/01759.Ivorra Martínez, J.; Sellés Cantó, MÁ.; Sánchez Caballero, S.; Boronat Vitoria, T. (2021). Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures. Journal of Applied Research in Technology & Engineering. 2(1):11-16. https://doi.org/10.4995/jarte.2021.14712OJS111621Alizadeh-Osgouei, M., Li, Y., Wen, C. (2019). A comprehensive review of biodegradable synthetic polymerceramic composites and their manufacture for biomedical applications. Bioactive materials, 4(1), 22-36. https://doi.org/10.1016/j.bioactmat.2018.11.003Arabnejad, S., Johnston, B., Tanzer, M., Pasini, D. (2017). Fully porous 3D printed titanium femoral stem toreduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.https://doi.org/10.1002/jor.23445Elkins, J., Marsh, J.L., Lujan, T., Peindl, R., Kellam, J., Anderson, D D., & Lack, W. (2016). Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. The Journal of bone and joint surgery. American volume, 98(4), 276. https://doi.org/10.2106/JBJS.O.00684Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Progress in materials science, 54(3), 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004George, D., Allena, R., Remond, Y. (2017). Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Computer Methods in Biomechanics and Biomedical Engineering, 20(sup1), S91-S92, https://doi.org/10.1080/10255842.2017.1382876Guastaldi, F., Martini, A., Rocha, E., Hochuli-Vieira, E., Guastaldi, A. (2019). Ti-15Mo Alloy Decreases the Stress Concentration in Mandibular Angle Fracture Internal Fixation Hardware. Journal of Maxillofacial and Oral Surgery, 19, 314-320. https://doi.org/10.1007/s12663-019-01251-8Hayes, J., Richards, R. (2010). The use of titanium and stainless steel in fracture fixation. Expert review of medical devices, 7(6), 843-853. https://doi.org/10.1586/erd.10.53Heimbach, B., Grassie, K., Shaw, M.T., Olson, J.R., Wei, M. (2017). Effect of hydroxyapatite concentration on highmodulus composite for biodegradable bone-fixation devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1963-1971. https://doi.org/10.1002/jbm.b.33713Jahagirdar, R., Scammell, B.E. (2009). Principles of fracture healing and disorders of bone union. Surgery (Oxford), 27(2), 63-69. https://doi.org/10.1016/j.mpsur.2008.12.011Kanno, T., Sukegawa, S., Furuki, Y., Nariai, Y., Sekine, J. (2018). Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dental Science Review, 54(3), 127-138. https://doi.org/10.1016/j.jdsr.2018.03.003Kim, H.J., Chang, S.H., Jung, H.J. (2012). The simulation of tissue differentiation at a fracture gap using a mechanoregulation theory dealing with deviatoric strains in the presence of a composite bone plate. Composites Part B: Engineering, 43(3), 978-987. https://doi.org/10.1016/j.compositesb.2011.09.011Klein, K.F., Hu, J., Reed, M.P., Hoff, C.N., Rupp, J.D. (2015). Development and validation of statistical models of femur geometry for use with parametric finite element models. Annals of biomedical engineering, 43(10), 2503-2514. https://doi.org/10.1007/s10439-015-1307-6Li, J., Li, Z., Ye, L., Zhao, X., Coates, P., Caton-Rose, F. (2017). Structure and biocompatibility improvement mechanism of highly oriented poly (lactic acid) produced by solid die drawing. European Polymer Journal, 97, 68-76. https://doi.org/10.1016/j.eurpolymj.2017.09.038Li, J., Qin, L., Yang, K., Ma, Z., Wang, Y., Cheng, L., Zhao, D. (2020). Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science & Technology, 36, 190-208. https://doi.org/10.1016/j.jmst.2019.07.024Li, J., Yin, P., Zhang, L., Chen, H., Tang, P. (2019). Medial anatomical buttress plate in treating displaced femoral neck fracture a finite element analysis. Injury, 50(11), 1895-1900. https://doi.org/10.1016/j.injury.2019.08.024Liu, B., Zhang, S., Zhang, J., Xu, Z., Chen, Y., Liu, S., Yang, L. (2019). A personalized preoperative modeling system for internal fixation plates in long bone fracture surgery-A straightforward way from CT images to plate model. The International Journal of Medical Robotics and Computer Assisted Surgery, 15(5), e2029. https://doi.org/10.1002/rcs.2029McClellan, R.T. (2013). The variable angle hip fracture nail relative to the Gamma 3: A finite element analysis illustrating the same stiffness and fatigue characteristics. Advances in orthopedics, 2013. https://doi.org/10.1155/2013/143801Murr, L.E. (2016). Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. Journal of Materials Science & Technology, 32(10), 987-995. https://doi.org/10.1016/j.jmst.2016.08.011Narayanan, G., Vernekar, V.N., Kuyinu, E.L., Laurencin, C.T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced drug delivery reviews, 107, 247-276. https://doi.org/10.1016/j.addr.2016.04.015Nurettin, D., Burak, B. (2018). Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. Journal of Cranio-Maxillofacial Surgery, 46(12), 2182-2189. https://doi.org/10.1016/j.jcms.2018.09.030Parthasarathy, J. (2015). 14 Additive Manufacturing of Medical Devices. Additive Manufacturing: Innovations, Advances, and Applications, 369.Ridzwan, M., Shuib, S., Hassan, A., Shokri, A., Ibrahim, M. (2006). Optimization in implant topology to reduce stress shielding problem. Journal of Applied Sciences, 6(13), 2768-2773. https://doi.org/10.3923/jas.2006.2768.2773Sariali, E., Mouttet, A., Pasquier, G., Durante, E. (2009). Three-dimensional hip anatomy in osteoarthritis: analysis of the femoral offset. The Journal of arthroplasty, 24(6), 990-997. https://doi.org/10.1016/j.arth.2008.04.031Singh, D., Singh, R., Boparai, K.S. (2018). Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review. Journal of Manufacturing Processes, 31, 80-95. https://doi.org/10.1016/j.jmapro.2017.10.026Spiridon, I., Tanase, C.E. (2018). Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International journal of biological macromolecules, 114, 855-863. https://doi.org/10.1016/j.ijbiomac.2018.03.140Tang, G., Liu, S.L., Wang, D.M., Wei, G.F., Wang, C.T. (2013). Finite element analysis in femoral fixation with TA3 titanium compressioll plate. In Advanced Materials Research, 647, 16-19. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.647.16Tymrak, B., Kreiger, M., Pearce, J.M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242-246. https://doi.org/10.1016/j.matdes.2014.02.038Wang, A.Y., Peng, J., Sun, M.X., Sui, X., Wang, X., Tian, Y., Lu, S.B. (2006). Biomechanical comparison of different structural bone grafting in femoral heads' defects of weight-bearing region. Journal of Medical Biomechanics, 4.Wang, J., Ma, J.X., Lu, B., Bai, H.H., Wang, Y., Ma, X.L. (2020). Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthopaedics & Traumatology: Surgery & Research, 106(1), 95-101. https://doi.org/10.1016/j.otsr.2019.04.027Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Xie, Y.M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141. https://doi.org/10.1016/j.biomaterials.2016.01.012Wu, C., Zheng, K., Fang, J., Steven, G.P., Li, Q. (2020). Time-dependent topology optimization of bone plates considering bone remodeling. Computer Methods in Applied Mechanics and Engineering, 359, 112702. https://doi.org/10.1016/j.cma.2019.112702Wu, K.J., Li, S.H., Yeh, K.T., Chen, H., Lee, R.P., Yu, T.C., Wang, J.H. (2019). The risk factors of nonunion after intramedullary nailing fixation of femur shaft fracture in middle age patients. Medicine, 98(29). https://doi.org/10.1097/MD.0000000000016559Wu, X., Wang, Z., Li, H., Li, Y., Wang, H., Tian, W. (2019). Biomechanical evaluation of osteoporotic fracture: Metal fixation versus absorbable fixation in Sawbones models. Injury, 50(7), 1272-1276. https://doi.org/10.1016/j.injury.2019.05.023Zhao, X., Niinomi, M., Nakai, M., Hieda, J., Ishimoto, T., Nakano, T. (2012). Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Acta biomaterialia, 8(6), 2392-2400. https://doi.org/10.1016/j.actbio.2012.02.01
    corecore