55,897 research outputs found

    Numerical study of the 2D lid-driven triangular cavities based on the Lattice Boltzmann method

    Get PDF
    Numerical study of two dimensional lid driven triangular cavity flow is performed via using lattice Boltzmann method on low Reynolds numbers. The equilateral triangular cavity is the first geometry to be studied, the simulation is performed at Reynolds number 500 and the numerical prediction is compared with previous work done by other scholars. Several isosceles triangular cavities are studied at different initial conditions, Reynolds numbers ranging from 100 to 3000, regardless of the geometry studied, the top lid is always moving from left to right and the driven velocity remains constant. Results are also compared with previous work performed by other scholars, the agreement is very good. According to the authors’ knowledge, this is the first time that MRT-LBM model is used to simulate the flow inside the triangular cavities. One of the advantages of this method is that it is capable of producing at low and high Reynolds numbers.Peer ReviewedPostprint (published version

    Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET

    Full text link
    In astrophysics, the two main methods traditionally in use for solving the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and finite volume discretization on a stationary mesh. However, the goal to efficiently make use of future exascale machines with their ever higher degree of parallel concurrency motivates the search for more efficient and more accurate techniques for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a promising class of methods in this regard, as they can be straightforwardly extended to arbitrarily high order while requiring only small stencils. Especially for applications involving comparatively smooth problems, higher-order approaches promise significant gains in computational speed for reaching a desired target accuracy. Here, we introduce our new astrophysical DG code TENET designed for applications in cosmology, and discuss our first results for 3D simulations of subsonic turbulence. We show that our new DG implementation provides accurate results for subsonic turbulence, at considerably reduced computational cost compared with traditional finite volume methods. In particular, we find that DG needs about 1.8 times fewer degrees of freedom to achieve the same accuracy and at the same time is more than 1.5 times faster, confirming its substantial promise for astrophysical applications.Comment: 21 pages, 7 figures, to appear in Proceedings of the SPPEXA symposium, Lecture Notes in Computational Science and Engineering (LNCSE), Springe

    Addressing the challenges of implementation of high-order finite volume schemes for atmospheric dynamics of unstructured meshes

    Get PDF
    The solution of the non-hydrostatic compressible Euler equations using Weighted Essentially Non-Oscillatory (WENO) schemes in two and three-dimensional unstructured meshes, is presented. Their key characteristics are their simplicity; accuracy; robustness; non-oscillatory properties; versatility in handling any type of grid topology; computational and parallel efficiency. Their defining characteristic is a non-linear combination of a series of high-order reconstruction polynomials arising from a series of reconstruction stencils. In the present study an explicit TVD Runge-Kutta 3rd -order method is employed due to its lower computational resources requirement compared to implicit type time advancement methods. The WENO schemes (up to 5th -order) are applied to the two dimensional and three dimensional test cases: a 2D rising

    A multi-band semiclassical model for surface hopping quantum dynamics

    Get PDF
    In the paper we derive a semiclassical model for surface hopping allowing quantum dynamical non-adiabatic transition between different potential energy surfaces in which cases the classical Born-Oppenheimer approximation breaks down. The model is derived using the Wigner transform and Weyl quantization, and the central idea is to evolve the entire Wigner matrix rather than just the diagonal entries as was done previously in the adiabatic case. The off-diagonal entries of the Wigner matrix suitably describe the non-adiabatic transition, such as the Berry connection, for avoided crossings. We study the numerical approximation issues of the model, and then conduct numerical experiments to validate the model.Comment: 29 pages, 10 figure
    corecore