376,917 research outputs found

    Computational Determination of Air Valves Capacity Using CFD Techniques

    Full text link
    [EN] The analysis of transient flow is necessary to design adequate protection systems that support the oscillations of pressure produced in the operation of motor elements and regulation. Air valves are generally used in pressurized water pipes to manage the air inside them. Under certain circumstances, they can be used as an indirect control mechanism of the hydraulic transient. Unfortunately, one of the major limitations is the reliability of information provided by manufacturers and vendors, which is why experimental trials are usually used to characterize such devices. The realization of these tests is not simple since they require an enormous volume of previously stored air to be used in such experiments. Additionally, the costs are expensive. Consequently, it is necessary to develop models that represent the behaviour of these devices. Although computational fluid dynamics (CFD) techniques cannot completely replace measurements, the amount of experimentation and the overall cost can be reduced significantly. This work approaches the characterization of air valves using CFD techniques, including some experimental tests to calibrate and validate the results. A mesh convergence analysis was made. The results show how the CFD models are an efficient alternative to represent the behavior of air valves during the entry and exit of air to the system, implying a better knowledge of the system to improve it.This research was funded by the Program Fondecyt Regular, grant number 1180660.García-Todolí, S.; Iglesias Rey, PL.; Mora Melia, D.; Martínez-Solano, FJ.; Fuertes-Miquel, VS. (2018). Computational Determination of Air Valves Capacity Using CFD Techniques. Water. 10(10):1-16. https://doi.org/10.3390/w10101433S1161010Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534)Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Observations of Air–Water Interaction in a Rapidly Filling Horizontal Pipe. Journal of Hydraulic Engineering, 128(6), 635-639. doi:10.1061/(asce)0733-9429(2002)128:6(635)Vasconcelos, J. G., Wright, S. J., & Roe, P. L. (2006). Improved Simulation of Flow Regime Transition in Sewers: Two-Component Pressure Approach. Journal of Hydraulic Engineering, 132(6), 553-562. doi:10.1061/(asce)0733-9429(2006)132:6(553)Li, J., & McCorquodale, A. (1999). Modeling Mixed Flow in Storm Sewers. Journal of Hydraulic Engineering, 125(11), 1170-1180. doi:10.1061/(asce)0733-9429(1999)125:11(1170)Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530Stephenson, D. (1997). Effects of Air Valves and Pipework on Water Hammer Pressures. Journal of Transportation Engineering, 123(2), 101-106. doi:10.1061/(asce)0733-947x(1997)123:2(101)Bianchi, A., Mambretti, S., & Pianta, P. (2007). Practical Formulas for the Dimensioning of Air Valves. Journal of Hydraulic Engineering, 133(10), 1177-1180. doi:10.1061/(asce)0733-9429(2007)133:10(1177)De Martino, G., Fontana, N., & Giugni, M. (2008). Transient Flow Caused by Air Expulsion through an Orifice. Journal of Hydraulic Engineering, 134(9), 1395-1399. doi:10.1061/(asce)0733-9429(2008)134:9(1395)Bhosekar, V. V., Jothiprakash, V., & Deolalikar, P. B. (2012). Orifice Spillway Aerator: Hydraulic Design. Journal of Hydraulic Engineering, 138(6), 563-572. doi:10.1061/(asce)hy.1943-7900.0000548Iglesias-Rey, P. L., Fuertes-Miquel, V. S., García-Mares, F. J., & Martínez-Solano, J. J. (2014). Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves. Procedia Engineering, 89, 1412-1419. doi:10.1016/j.proeng.2014.11.467Martins, N. M. C., Soares, A. K., Ramos, H. M., & Covas, D. I. C. (2016). CFD modeling of transient flow in pressurized pipes. Computers & Fluids, 126, 129-140. doi:10.1016/j.compfluid.2015.12.002Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357Davis, J. A., & Stewart, M. (2002). Predicting Globe Control Valve Performance—Part I: CFD Modeling. Journal of Fluids Engineering, 124(3), 772-777. doi:10.1115/1.1490108Stephens, D., Johnson, M. C., & Sharp, Z. B. (2012). Design Considerations for Fixed-Cone Valve with Baffled Hood. Journal of Hydraulic Engineering, 138(2), 204-209. doi:10.1061/(asce)hy.1943-7900.0000496Romero-Gomez, P., Ho, C. K., & Choi, C. Y. (2008). Mixing at Cross Junctions in Water Distribution Systems. I: Numerical Study. Journal of Water Resources Planning and Management, 134(3), 285-294. doi:10.1061/(asce)0733-9496(2008)134:3(285)Austin, R. G., Waanders, B. van B., McKenna, S., & Choi, C. Y. (2008). Mixing at Cross Junctions in Water Distribution Systems. II: Experimental Study. Journal of Water Resources Planning and Management, 134(3), 295-302. doi:10.1061/(asce)0733-9496(2008)134:3(295)Ho, C. K. (2008). Solute Mixing Models for Water-Distribution Pipe Networks. Journal of Hydraulic Engineering, 134(9), 1236-1244. doi:10.1061/(asce)0733-9429(2008)134:9(1236)Huang, J., Weber, L. J., & Lai, Y. G. (2002). Three-Dimensional Numerical Study of Flows in Open-Channel Junctions. Journal of Hydraulic Engineering, 128(3), 268-280. doi:10.1061/(asce)0733-9429(2002)128:3(268)Weber, L. J., Schumate, E. D., & Mawer, N. (2001). Experiments on Flow at a 90° Open-Channel Junction. Journal of Hydraulic Engineering, 127(5), 340-350. doi:10.1061/(asce)0733-9429(2001)127:5(340)Chanel, P. G., & Doering, J. C. (2008). Assessment of spillway modeling using computational fluid dynamics. Canadian Journal of Civil Engineering, 35(12), 1481-1485. doi:10.1139/l08-094Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., & Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering, 137(1), 66-74. doi:10.1061/(asce)hy.1943-7900.0000279Castillo, L., García, J., & Carrillo, J. (2017). Influence of Rack Slope and Approaching Conditions in Bottom Intake Systems. Water, 9(1), 65. doi:10.3390/w9010065Regueiro-Picallo, M., Naves, J., Anta, J., Puertas, J., & Suárez, J. (2016). Experimental and Numerical Analysis of Egg-Shaped Sewer Pipes Flow Performance. Water, 8(12), 587. doi:10.3390/w812058

    On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers

    Full text link
    "This is the peer reviewed version of the following article: Navarro-Jiménez, José Manuel, Enrique Nadal, Manuel Tur, José Martínez-Casas, and Juan José Ródenas. 2020. "On the Use of Stabilization Techniques in the Cartesian Grid Finite Element Method Framework for Iterative Solvers." International Journal for Numerical Methods in Engineering 121 (13). Wiley: 3004-20. doi:10.1002/nme.6344, which has been published in final form at https://doi.org/10.1002/nme.6344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Fictitious domain methods, like the Cartesian grid finite element method (cgFEM), are based on the use of unfitted meshes that must be intersected. This may yield to ill-conditioned systems of equations since the stiffness associated with a node could be small, thus poorly contributing to the energy of the problem. This issue complicates the use of iterative solvers for large problems. In this work, we present a new stabilization technique that, in the case of cgFEM, preserves the Cartesian structure of the mesh. The formulation consists in penalizing the free movement of those nodes by a smooth extension of the solution from the interior of the domain, through a postprocess of the solution via a displacement recovery technique. The numerical results show an improvement of the condition number and a decrease in the number of iterations of the iterative solver while preserving the problem accuracy.The authors wish to thank the Spanish "Ministerio de Economía y Competitividad," the "Generalitat Valenciana," and the "Universitat Politècnica de València" for their financial support received through the projects DPI2017-89816-R, Prometeo 2016/007 and the FPI2015 program, respectively.Navarro-Jiménez, J.; Nadal, E.; Tur Valiente, M.; Martínez Casas, J.; Ródenas, JJ. (2020). On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers. International Journal for Numerical Methods in Engineering. 121(13):3004-3020. https://doi.org/10.1002/nme.6344S3004302012113Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-yDüster, A., Parvizian, J., Yang, Z., & Rank, E. (2008). The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45-48), 3768-3782. doi:10.1016/j.cma.2008.02.036Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786Nadal, E., Ródenas, J. J., Sánchez-Orgaz, E. M., López-Real, S., & Martí-Pellicer, J. (2014). Sobre la utilización de códigos de elementos finitos basados en mallados cartesianos en optimización estructural. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 155-165. doi:10.1016/j.rimni.2013.04.009Giovannelli, L., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elements in Analysis and Design, 136, 37-57. doi:10.1016/j.finel.2017.07.010Schillinger, D., & Ruess, M. (2014). The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Archives of Computational Methods in Engineering, 22(3), 391-455. doi:10.1007/s11831-014-9115-yBurman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2014). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472-501. doi:10.1002/nme.4823Tur, M., Albelda, J., Marco, O., & Ródenas, J. J. (2015). Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Computer Methods in Applied Mechanics and Engineering, 296, 352-375. doi:10.1016/j.cma.2015.08.001Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629De Prenter, F., Verhoosel, C. V., van Zwieten, G. J., & van Brummelen, E. H. (2017). Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 316, 297-327. doi:10.1016/j.cma.2016.07.006Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., & Keyes, D. (2011). Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. International Journal for Numerical Methods in Engineering, 90(3), 311-328. doi:10.1002/nme.3318Menk, A., & Bordas, S. P. A. (2010). A robust preconditioning technique for the extended finite element method. International Journal for Numerical Methods in Engineering, 85(13), 1609-1632. doi:10.1002/nme.3032Dauge, M., Düster, A., & Rank, E. (2015). Theoretical and Numerical Investigation of the Finite Cell Method. Journal of Scientific Computing, 65(3), 1039-1064. doi:10.1007/s10915-015-9997-3Elfverson, D., Larson, M. G., & Larsson, K. (2018). CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences, 5(1). doi:10.1186/s40323-018-0099-2Verhoosel, C. V., van Zwieten, G. J., van Rietbergen, B., & de Borst, R. (2015). Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Computer Methods in Applied Mechanics and Engineering, 284, 138-164. doi:10.1016/j.cma.2014.07.009Burman, E. (2010). Ghost penalty. Comptes Rendus Mathematique, 348(21-22), 1217-1220. doi:10.1016/j.crma.2010.10.006BadiaS VerdugoF MartínAF. The aggregated unfitted finite element method for elliptic problems;2017.Jomo, J. N., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C. V., Kollmannsberger, S., … Rank, E. (2019). Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and Design, 163, 14-30. doi:10.1016/j.finel.2019.01.009Béchet, É., Moës, N., & Wohlmuth, B. (2008). A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78(8), 931-954. doi:10.1002/nme.2515Hautefeuille, M., Annavarapu, C., & Dolbow, J. E. (2011). Robust imposition of Dirichlet boundary conditions on embedded surfaces. International Journal for Numerical Methods in Engineering, 90(1), 40-64. doi:10.1002/nme.3306Hansbo, P., Lovadina, C., Perugia, I., & Sangalli, G. (2005). A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numerische Mathematik, 100(1), 91-115. doi:10.1007/s00211-005-0587-4Burman, E., & Hansbo, P. (2012). Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4), 328-341. doi:10.1016/j.apnum.2011.01.008Gerstenberger, A., & Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 197(19-20), 1699-1714. doi:10.1016/j.cma.2007.07.002AxelssonO. Iterative solution methods;1994.Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837Xiao, Q. Z., & Karihaloo, B. L. (s. f.). Statically Admissible Stress Recovery using the Moving Least Squares Technique. Progress in Computational Structures Technology, 111-138. doi:10.4203/csets.11.5Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903Zhang, Z. (2001). Advances in Computational Mathematics, 15(1/4), 363-374. doi:10.1023/a:1014221409940González-Estrada, O. A., Nadal, E., Ródenas, J. J., Kerfriden, P., Bordas, S. P. A., & Fuenmayor, F. J. (2013). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 53(5), 957-976. doi:10.1007/s00466-013-0942-8Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013ZienkiewiczOC TaylorRL. The finite element method fifth edition volume 1: the basis.MA:Butterworth‐Heinemann;2000.Brenner, S. C., & Scott, L. R. (1994). The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. doi:10.1007/978-1-4757-4338-

    Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches

    Full text link
    [EN] A classical hydraulic jump with Froude number (Fr1=6) and Reynolds number (Re1=210,000) was characterized using the computational fluid dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were compared with experimental data from a physical model designed for this purpose. The most relevant hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, and fluctuating variables. The model outcome was also compared with previous results from the literature. Both CFD codes were found to represent with high accuracy the hydraulic jump surface profile, roller length, efficiency, and sequent depths ratio, consistently with previous research. Some significant differences were found between both CFD codes regarding velocity distributions and pressure fluctuations, although in general the results agree well with experimental and bibliographical observations. This finding makes models with these characteristics suitable for engineering applications involving the design and optimization of energy dissipation devices.The research presented herein was possible thanks to the Generalitat Valenciana predoctoral grants [Ref. (2015/7521)], in collaboration with the European Social Funds and to the research project La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Bayón, A.; García-Bartual, R.; López Jiménez, PA.; Vallés-Morán, FJ. (2020). Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering. 146(12):1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820S11314612Abdul Khader, M. H., & Elango, K. (1974). TURBULENT PRESSURE FIELD BENEATH A HYDRAULIC JUMP. Journal of Hydraulic Research, 12(4), 469-489. doi:10.1080/00221687409499725Bakhmeteff B. A. and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” In Vol. 101 of Proc. American Society of Civil Engineers 630–647. Reston VA: ASCE.Bayon A. 2017. “Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD).” Ph.D. thesis Research Institute of Water and Environmental Engineering Universitat Politècnica de València.Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Bayon A. J. F. Macián-Pérez F. J. Vallés-Morán and P. A. López-Jiménez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In E-proc. 38th IAHR World Congress. Panama City Panama: Spanish Ministry of Economy.Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Bradshaw, P. (1997). Understanding and prediction of turbulent flow—1996. International Journal of Heat and Fluid Flow, 18(1), 45-54. doi:10.1016/s0142-727x(96)00134-8Caishui, H. (2012). Three-dimensional Numerical Analysis of Flow Pattern in Pressure Forebay of Hydropower Station. Procedia Engineering, 28, 128-135. doi:10.1016/j.proeng.2012.01.694Castillo L. G. J. M. Carrillo J. T. García and A. Vigueras-Rodríguez. 2014. “Numerical simulations and laboratory measurements in hydraulic jumps.” In Proc. 11th Int. Conf. of Hydroinformatics. New York: Spanish Ministry of Economy.Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: basic flow features. Journal of Hydraulic Research, 47(6), 744-754. doi:10.3826/jhr.2009.3610Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Chanson, H. (2009). Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics - B/Fluids, 28(2), 191-210. doi:10.1016/j.euromechflu.2008.06.004Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Chanson, H., & Montes, J. S. (1995). Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, 121(2), 129-144. doi:10.1061/(asce)0733-9429(1995)121:2(129)Cheng, C.-K., Tai, Y.-C., & Jin, Y.-C. (2017). Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps. Journal of Hydraulic Engineering, 143(9), 04017028. doi:10.1061/(asce)hy.1943-7900.0001325Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Fuentes-Pérez, J. F., Silva, A. T., Tuhtan, J. A., García-Vega, A., Carbonell-Baeza, R., Musall, M., & Kruusmaa, M. (2018). 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 99, 156-169. doi:10.1016/j.envsoft.2017.09.011Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Hager, W. H. (1992). Energy Dissipators and Hydraulic Jump. Water Science and Technology Library. doi:10.1007/978-94-015-8048-9Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Jesudhas, V., Balachandar, R., Roussinova, V., & Barron, R. (2018). Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 144(6), 04018022. doi:10.1061/(asce)hy.1943-7900.0001427Jesudhas, V., Roussinova, V., Balachandar, R., & Barron, R. (2017). Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 143(3), 04016091. doi:10.1061/(asce)hy.1943-7900.0001231KIM, J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k?? turbulence model. Atmospheric Environment, 38(19), 3039-3048. doi:10.1016/j.atmosenv.2004.02.047Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099)Langhi, M., & Hosoda, T. (2018). Three-dimensional unsteady RANS model for hydraulic jumps. ISH Journal of Hydraulic Engineering, 1-8. doi:10.1080/09715010.2018.1555775Liu, M., Rajaratnam, N., & Zhu, D. Z. (2004). Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, 130(6), 511-520. doi:10.1061/(asce)0733-9429(2004)130:6(511)Liu, T., Song, L., Fu, W., Wang, G., Lin, Q., Zhao, D., & Yi, B. (2018). Experimental Study on Single-Hole Injection of Kerosene into Pressurized Quiescent Environments. Journal of Energy Engineering, 144(3), 04018014. doi:10.1061/(asce)ey.1943-7897.0000536Ma, J., Oberai, A. A., Lahey, R. T., & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911-919. doi:10.1007/s00231-011-0867-8McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)McDonald P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc. ASME 1971 Int. Gas Turbine Conf. and Products Show. Houston: International Gas Turbine Institute.Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique : mesures de turbulence dans la région diphasique. La Houille Blanche, 58(4), 279-293. doi:10.1051/lhb/1972021Sarfaraz M. and J. Attari. 2011. “Numerical simulation of uniform flow region over a steeply sloping stepped spillway.” In Proc. 6th National Congress on Civil Engineering. Semnan Iran: Iran Water and Power Development Company.Spalart, P. . (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. doi:10.1016/s0142-727x(00)00007-2Speziale, C. G., & Thangam, S. (1992). Analysis of an RNG based turbulence model for separated flows. International Journal of Engineering Science, 30(10), 1379-IN4. doi:10.1016/0020-7225(92)90148-aSpoljaric A. 1984. “Dynamic characteristics of the load on the bottom plate under hydraulic jump.” In Proc. Int. Conf. Hydrosoft’84: Hydraulic Engineering Software. New York: Elsevier.Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Valero D. and D. B. Bung. 2015. “Hybrid investigations of air transport processes in moderately sloped stepped spillway flows.” In Vol. 28 of E-proc. 36th IAHR World Congress 1–10. The Hague Netherlands: IHE Delft.Valero, D., & Bung, D. B. (2016). Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environmental Modelling & Software, 82, 218-228. doi:10.1016/j.envsoft.2016.04.030Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028von Kármán T. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Proc. 3rd Int. Congress on Applied Mechanics. New York: Springer.Wang H. 2014. “Turbulence and air entrainment in hydraulic jumps.” Ph.D. thesis Dept. of Civil Engineering Univ. of Queensland.Wang, H., & Chanson, H. (2013). Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518. doi:10.1080/1573062x.2013.847464Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Witt, A., Gulliver, J., & Shen, L. (2015). Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72, 165-180. doi:10.1016/j.ijmultiphaseflow.2015.02.012Wu, J., Zhou, Y., & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin. Journal of Hydrodynamics, 30(5), 962-965. doi:10.1007/s42241-018-0088-4Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; García-Bartual, R.; Huber, B.; Bayón, A.; Vallés-Morán, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

    Full text link
    [EN] Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined.The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain". The support given to Ms. N.H.G. by Universitat Politecnica de Valencia through the "FPI-Subprograma 2" (No.FPI-2018-S2-1368) grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledgedTiseira, A.; Navarro, R.; Inhestern, LB.; Hervás-Gómez, N. (2020). Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies. 13(11):1-19. https://doi.org/10.3390/en13112930S1191311Praveena, V., & Martin, M. L. J. (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5), 704-720. doi:10.1016/j.joei.2017.05.010Sindhu, R., Amba Prasad Rao, G., & Madhu Murthy, K. (2018). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal, 57(3), 1379-1392. doi:10.1016/j.aej.2017.06.009Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949Suhrmann, J. F., Peitsch, D., Gugau, M., & Heuer, T. (2012). On the Effect of Volute Tongue Design on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-69525Roumeas, M., & Cros, S. (2012). Aerodynamic Investigation of a Nozzle Clearance Effect on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-68835Liu, Y., Yang, C., Qi, M., Zhang, H., & Zhao, B. (2014). Shock, Leakage Flow and Wake Interactions in a Radial Turbine With Variable Guide Vanes. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25888Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., & Piscaglia, F. (2013). 1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions. Applied Energy, 111, 1-15. doi:10.1016/j.apenergy.2013.04.016Bohbot, J., Chryssakis, C., & Miche, M. (2006). Simulation of a 4-Cylinder Turbocharged Gasoline Direct Injection Engine Using a Direct Temporal Coupling Between a 1D Simulation Software and a 3D Combustion Code. SAE Technical Paper Series. doi:10.4271/2006-01-3263Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989Tamaki, H., & Unno, M. (2008). Study on Flow Fields in Variable Area Nozzles for Radial Turbines. International Journal of Fluid Machinery and Systems, 1(1), 47-56. doi:10.5293/ijfms.2008.1.1.047Eroglu, H., & Tabakoff, W. (1991). LDV Measurements and Investigation of Flow Field Through Radial Turbine Guide Vanes. Journal of Fluids Engineering, 113(4), 660-667. doi:10.1115/1.2926531Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi:10.1115/2000-gt-0470Galindo, J., Tiseira Izaguirre, A. O., García-Cuevas, L. M., & Hervás Gómez, N. (2020). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research, 22(6), 2010-2020. doi:10.1177/1468087420916281Dufour, G., Carbonneau, X., Cazalbou, J.-B., & Chassaing, P. (2006). Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design. Volume 6: Turbomachinery, Parts A and B. doi:10.1115/gt2006-91227Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., & Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35(1), 146-153. doi:10.1016/j.expthermflusci.2010.07.018Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps. Volume 6: Turbo Expo 2007, Parts A and B. doi:10.1115/gt2007-27376Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Serrano, J. R., Gil, A., Navarro, R., & Inhestern, L. B. (2017). Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. doi:10.1115/gt2017-63368Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2019). Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 78, 108423. doi:10.1016/j.ijheatfluidflow.2019.108423Choi, M., Baek, J. H., Chung, H. T., Oh, S. H., & Ko, H. Y. (2008). Effects of the low Reynolds number on the loss characteristics in an axial compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(2), 209-218. doi:10.1243/09576509jpe520Klausner, E., & Gampe, U. (2014). Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25141Tiainen, J., Jaatinen-Värri, A., Grönman, A., Turunen-Saaresti, T., & Backman, J. (2018). Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors. Journal of Turbomachinery, 140(5). doi:10.1115/1.4038872Vinuesa, R., Hosseini, S. M., Hanifi, A., Henningson, D. S., & Schlatter, P. (2017). Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section. Flow, Turbulence and Combustion, 99(3-4), 613-641. doi:10.1007/s10494-017-9840-

    Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage

    Full text link
    [EN] The occurrence of sub-atmospheric pressure in the drainage of pipelines containing an air pocket has been known as a major cause of several serious problems. Accordingly, some system malfunction and pipe buckling events have been reported in the literature. This case has been studied experimentally and numerically in the current research considering objectives for a better understanding of: (i) the emptying process, (ii) the main parameters influencing the drainage, and (iii) the air-water interface deformation. Also, this research demonstrates the ability of a computational fluid dynamic (CFD) model in the simulation of this event. The effects of the air pocket size, the percentage and the time of valve opening on the pressure variation have been studied. Results show the pipeline drainage mostly occurs due to backflow air intrusion. The worst case scenario is associated with a fast valve opening when a tiny air pocket exists in the pipeline.This work is supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal [grant number PD/BD/114459/2016].Besharat, M.; Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Viseu, MT.; Ramos, HM. (2019). Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. Journal of Hydraulic Research. 58(4):553-565. https://doi.org/10.1080/00221686.2019.1625819S553565584ANSYS FLUENT R19.0 academic [Computer software]. ANSYS, Canonsburg, PA. Retrieved from https://www.ansys.com/academic/free-student-productsApollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209-248. doi:10.1017/s0022112068000133Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal, 15(8), 769-779. doi:10.1080/1573062x.2018.1540711Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1Besharat, M., Tarinejad, R., & Ramos, H. M. (2015). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply: Research and Technology-Aqua, 65(2), 116-126. doi:10.2166/aqua.2015.081Besharat, M., Teresa Viseu, M., & Ramos, H. (2017). Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events. Water, 9(1), 63. doi:10.3390/w9010063Collins, R. P., Boxall, J. B., Karney, B. W., Brunone, B., & Meniconi, S. (2012). How severe can transients be after a sudden depressurization? Journal - American Water Works Association, 104(4), E243-E251. doi:10.5942/jawwa.2012.104.0055Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 144(4), 06018004. doi:10.1061/(asce)hy.1943-7900.0001446Ding, H., Visser, F. C., Jiang, Y., & Furmanczyk, M. (2011). Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications. Journal of Fluids Engineering, 133(1). doi:10.1115/1.4003196Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Liu, D., & Zhou, L. (2009). Numerical Simulation of Transient Flow in Pressurized Water Pipeline with Trapped Air Mass. 2009 Asia-Pacific Power and Energy Engineering Conference. doi:10.1109/appeec.2009.4918544Martinoia, T., Barreto, C. V., da Rocha, J. C. D. C., Lavoura, J., & Henriques, F. M. P. (2012). Simulation and Planning of Pipeline Emptying Operations. Volume 1: Upstream Pipelines; Project Management; Design and Construction; Environment; Facilities Integrity Management; Operations and Maintenance; Pipeline Automation and Measurement. doi:10.1115/ipc2012-90432Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions. Journal of Hydraulic Engineering, 139(9), 921-934. doi:10.1061/(asce)hy.1943-7900.0000757Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647-656. doi:10.1080/00221686.2017.1300193Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines. Journal of Hydraulic Engineering, 137(12), 1686-1692. doi:10.1061/(asce)hy.1943-7900.0000460Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357Zukoski, E. E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821-837. doi:10.1017/s002211206600044

    A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach

    Full text link
    [EN] Duct junctions play a major role in the operation and design of most piping systems. The objective of this paper is to establish the potential of a staggered mesh finite volume model as a way to improve the description of the effect of simple duct junctions on an otherwise one-dimensional flow system, such as the intake or exhaust of an internal combustion engine. Specific experiments have been performed in which different junctions have been characterized as a multi-port, and that have provided precise and reliable results on the propagation of pressure pulses across junctions. The results obtained have been compared to simulations performed with a staggered mesh finite volume method with different flux limiters and different meshes and, as a reference, have also been compared with the results of a more conventional pressure loss- based model. The results indicate that the staggered mesh finite volume model provides a closer description of wave dynamics, even if further work is needed to establish the optimal calculation settings.Manuel Hernandez is partially supported through contract FPI-S2-2015-1064 of Programa de Apoyo para la Investigacin y Desarrollo (PAID) of Universitat Politecnica de Valencia.Torregrosa, AJ.; Broatch, A.; García-Cuevas González, LM.; Hernández-Marco, M. (2017). A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach. Applied Sciences. 7(5):1-25. https://doi.org/10.3390/app7050480S12575Payri, F., Reyes, E., & Galindo, J. (2000). Analysis and Modeling of the Fluid-Dynamic Effects in Branched Exhaust Junctions of ICE. Journal of Engineering for Gas Turbines and Power, 123(1), 197-203. doi:10.1115/1.1339988Tang, S. K. (2004). Sound transmission characteristics of Tee-junctions and the associated length corrections. The Journal of the Acoustical Society of America, 115(1), 218-227. doi:10.1121/1.1631830Harrison, M. F., De Soto, I., & Rubio Unzueta, P. L. (2004). A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle. Journal of Sound and Vibration, 278(4-5), 975-1011. doi:10.1016/j.jsv.2003.12.009Karlsson, M., & Åbom, M. (2011). Quasi-steady model of the acoustic scattering properties of a T-junction. Journal of Sound and Vibration, 330(21), 5131-5137. doi:10.1016/j.jsv.2011.05.012Karlsson, M., & Åbom, M. (2010). Aeroacoustics of T-junctions—An experimental investigation. Journal of Sound and Vibration, 329(10), 1793-1808. doi:10.1016/j.jsv.2009.11.024Corberán, J. M. (1992). A New Constant Pressure Model for N-Branch Junctions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(2), 117-123. doi:10.1243/pime_proc_1992_206_167_02Schmandt, B., & Herwig, H. (2015). The head change coefficient for branched flows: Why «losses» due to junctions can be negative. International Journal of Heat and Fluid Flow, 54, 268-275. doi:10.1016/j.ijheatfluidflow.2015.06.004Shaw, C. T., Lee, D. J., Richardson, S. H., & Pierson, S. (2000). Modelling the Effect of Plenum-Runner Interface Geometry on the Flow Through an Inlet System. SAE Technical Paper Series. doi:10.4271/2000-01-0569Pérez-García, J., Sanmiguel-Rojas, E., Hernández-Grau, J., & Viedma, A. (2006). Numerical and experimental investigations on internal compressible flow at T-type junctions. Experimental Thermal and Fluid Science, 31(1), 61-74. doi:10.1016/j.expthermflusci.2006.02.001Naeimi, H., Domiry, G., Gorji, M., Javadirad, G., & Keshavarz, M. (2011). A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD. Thermal Science, 15(4), 1023-1033. doi:10.2298/tsci100417041nSakowitz, A., Mihaescu, M., & Fuchs, L. (2014). Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations. International Journal of Heat and Fluid Flow, 45, 135-146. doi:10.1016/j.ijheatfluidflow.2013.06.014Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2001). Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8), 861-881. doi:10.1177/095440620121500801Hager, W. H. (1984). An Approximate Treatment of Flow in Branches and Bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(1), 63-69. doi:10.1243/pime_proc_1984_198_088_02Paul, J., Selamet, A., Miazgowicz, K. D., & Tallio, K. V. (2007). Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface. SAE Technical Paper Series. doi:10.4271/2007-01-0649Pérez-García, J., Sanmiguel-Rojas, E., & Viedma, A. (2010). New coefficient to characterize energy losses in compressible flow at T-junctions. Applied Mathematical Modelling, 34(12), 4289-4305. doi:10.1016/j.apm.2010.05.005Wang, W., Lu, Z., Deng, K., & Qu, S. (2014). An experimental study of compressible combining flow at 45° T-junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), 1600-1610. doi:10.1177/0954406214546678Peters, B., & Gosman, A. D. (1993). Numerical Simulation of Unsteady Flow in Engine Intake Manifolds. SAE Technical Paper Series. doi:10.4271/930609Bingham, J. F., & Blair, G. P. (1985). An Improved Branched Pipe Model for Multi-Cylinder Automotive Engine Calculations. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 199(1), 65-77. doi:10.1243/pime_proc_1985_199_140_01William-Louis, M. J. P., Ould-El-Hadrami, A., & Tournier, C. (1998). On the calculation of the unsteady compressible flow through an N-branch junction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(1), 49-56. doi:10.1243/0954406981521033Bassett, M. D., Pearson, R. J., Fleming, N. P., & Winterbone, D. E. (2003). A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations. SAE Technical Paper Series. doi:10.4271/2003-01-0370Pearson, R. J., Bassett, M. D., Batten, P., Winterbone, D. E., & Weaver, N. W. E. (1999). Multi-Dimensional Wave Propagation in Pipe Junctions. SAE Technical Paper Series. doi:10.4271/1999-01-1186Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2000). Modelling Engines with Pulse Converted Exhaust Manifolds Using One-Dimensional Techniques. SAE Technical Paper Series. doi:10.4271/2000-01-0290Montenegro, G., Onorati, A., Piscaglia, F., & D’Errico, G. (2007). Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2007-01-0495Onorati, A., Montenegro, G., D’Errico, G., & Piscaglia, F. (2010). Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2010-01-1194Montenegro, G., Onorati, A., & Della Torre, A. (2013). The prediction of silencer acoustical performances by 1D, 1D–3D and quasi-3D non-linear approaches. Computers & Fluids, 71, 208-223. doi:10.1016/j.compfluid.2012.10.016Morel, T., Silvestri, J., Goerg, K.-A., & Jebasinski, R. (1999). Modeling of Engine Exhaust Acoustics. SAE Technical Paper Series. doi:10.4271/1999-01-1665Sapsford, S. M., Richards, V. C. M., Amlee, D. R., Morel, T., & Chappell, M. T. (1992). Exhaust System Evaluation and Design by Non-Linear Modeling. SAE Technical Paper Series. doi:10.4271/920686Montenegro, G., Della Torre, A., Onorati, A., Fairbrother, R., & Dolinar, A. (2011). Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2011-01-1526Payri, F., Desantes, J. M., & Broatch, A. (2000). Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. The Journal of the Acoustical Society of America, 107(2), 731-738. doi:10.1121/1.428256Torregrosa, A. J., Broatch, A., Fernández, T., & Denia, F. D. (2006). Description and measurement of the acoustic characteristics of two-tailpipe mufflers. The Journal of the Acoustical Society of America, 119(2), 723. doi:10.1121/1.2159228Torregrosa, A. J., Broatch, A., Arnau, F. J., & Hernández, M. (2016). A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling. Journal of Computational and Applied Mathematics, 291, 103-111. doi:10.1016/j.cam.2015.03.034Montenegro, G., Della Torre, A., Onorati, A., & Fairbrother, R. (2013). A Nonlinear Quasi-3D Approach for the Modeling of Mufflers with Perforated Elements and Sound-Absorbing Material. Advances in Acoustics and Vibration, 2013, 1-10. doi:10.1155/2013/546120CMT—Motores Térmicos, Universitat Politècnica de Valènciahttp://www.openwam.org/Ikeda, T., & Nakagawa, T. (1979). On the SHASTA FCT Algorithm for the Equation ∂ρ ∂t + ∂ ∂x (υ(ρ)ρ) = 0. Mathematics of Computation, 33(148), 1157. doi:10.2307/2006453Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629Van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. doi:10.1016/0021-9991(79)90145-

    Acoustic characteristics of a ported shroud turbocompressor operating at design conditions

    Full text link
    [EN] In this article, the acoustic characterisation of a turbocharger compressor with ported shroud design is carried out through the numerical simulation of the system operating under design conditions of maximum isentropic efficiency. While ported shroud compressors have been proposed as a way to control the flow near unstable conditions in order to obtain a more stable operation and enhance deep surge margin, it is often assumed that the behaviour under stable design conditions is characterised by a smooth, non-detached flow that matches an equivalent standard compressor. Furthermore, research is scarce regarding the acoustic effects of the ported shroud addition, especially under the design conditions. To analyse the flow field evolution and its relation with the noise generation, spectral signatures using statistical and scale-resolving turbulence modelling methods are obtained after successfully validating the performance and acoustic predictions of the numerical model with experimental measurements. Propagation of the frequency content through the ducts has been estimated with the aid of pressure decomposition methods to enhance the content coming from the compressor. Expected acoustic phenomena such as `buzz-saw¿ tones, blade passing peaks and broadband noise are correctly identified in the modelled spectrum. Analysis of the flow behaviour in the ported shroud shows rotating structures through the slot that may impact the acoustic and vibration response. Further inspection of the pressure field through modal decomposition confirms the influence of the ported shroud cavity in noise generation and propagation, especially at lower frequencies, suggesting that further research should be carried out on the impact these flow enhancement solutions have on the noise emission of the turbocharger.The project was sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this article. The support of the HPC group at the University of Huddersfield is gratefully acknowledged.Sharma, S.; Broatch, A.; Garcia Tiscar, J.; Allport, JM.; Nickson, AK. (2020). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research. 21(8):1454-1468. https://doi.org/10.1177/1468087418814635S14541468218Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-zGonzalez, A., Ferrer, M., de Diego, M., Piñero, G., & Garcia-Bonito, J. . (2003). Sound quality of low-frequency and car engine noises after active noise control. Journal of Sound and Vibration, 265(3), 663-679. doi:10.1016/s0022-460x(02)01462-1Brizon, C. J. da S., & Bauzer Medeiros, E. (2012). Combining subjective and objective assessments to improve acoustic comfort evaluation of motor cars. Applied Acoustics, 73(9), 913-920. doi:10.1016/j.apacoust.2012.03.013Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229Torregrosa, A. J., Broatch, A., Margot, X., García-Tíscar, J., Narvekar, Y., & Cheung, R. (2017). Local flow measurements in a turbocharger compressor inlet. Experimental Thermal and Fluid Science, 88, 542-553. doi:10.1016/j.expthermflusci.2017.07.007Broatch, A., Galindo, J., Navarro, R., García-Tíscar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12-20. doi:10.1080/19942060.2015.1004788Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034Galindo, J., Tiseira, A., Navarro, R., & López, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040Torregrosa, A. J., Broatch, A., Margot, X., & García-Tíscar, J. (2016). Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition. Journal of Sound and Vibration, 376, 60-71. doi:10.1016/j.jsv.2016.04.035Nicoud, F., & Ducros, F. (1999). Flow, Turbulence and Combustion, 62(3), 183-200. doi:10.1023/a:1009995426001Chow, P., Cross, M., & Pericleous, K. (1996). A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. Applied Mathematical Modelling, 20(2), 170-183. doi:10.1016/0307-904x(95)00156-eKaji, S., & Okazaki, T. (1970). Generation of sound by rotor-stator interaction. Journal of Sound and Vibration, 13(3), 281-307. doi:10.1016/s0022-460x(70)80020-7Sivagnanasundaram, S., Spence, S., & Early, J. (2013). Map Width Enhancement Technique for a Turbocharger Compressor. Journal of Turbomachinery, 136(6). doi:10.1115/1.4007895Aubry, N. (1991). On the hidden beauty of the proper orthogonal decomposition. Theoretical and Computational Fluid Dynamics, 2(5-6), 339-352. doi:10.1007/bf00271473Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101Nikiforov, V. (2007). The energy of graphs and matrices. Journal of Mathematical Analysis and Applications, 326(2), 1472-1475. doi:10.1016/j.jmaa.2006.03.07

    A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires

    Full text link
    [EN] Non-uniform heating in structures under fire involves the appearance of 3D-phenomena and typically requires the use of complex models built with finite elements shell or solid. Although different procedures have been developed to model the complex thermo-mechanical phenomenon, there is no simple, accurate, and low-cost computational methodology involving the space-time variation of the temperature and displacement fields that opens the path advancing more easily towards modeling more complex structural problems in a fire situation. To overcome this knowledge-gap, this paper presents a new methodology that fulfills those conditions, making it possible to carry out more complex analyses that require many simulations in a short time and at low computational costs. The new methodology to obtain the thermo-mechanical response to non-uniform heating and mechanical loads is general, simple, accurate, and avoids using complex and high-cost finite elements, simplifying the structural modeling, and reducing the computational analysis cost. As a result, complex structural fire engineering problems such as probabilistic and optimization analysis can be handled much more easily, representing a significant step toward the generalized application of performance-based approaches to deal with fire effects on structures. The procedure uses simple but advanced Timoshenko¿s beam-type finite elements and represents the non-uniform temperature space-time field through a mean value of the temperature and the two mean values of the section thermal gradients which are variable in time during the fire. The methodology is satisfactorily validated with results (experimental and numerical) of the Cardington frame test and captures 3D-phenomena such as buckling, flexural-torsional buckling, and warping.Thanks are due to the Fundación Carolina, the Universitat Politècnica de València, and the Universidad Surcolombiana for the support given to this research through the 2018-2019 Ph.D. scholarship.Pallares-Muñoz, MR.; Paya-Zaforteza, I.; Hospitaler Pérez, A. (2021). A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires. Structures. 31:462-483. https://doi.org/10.1016/j.istruc.2021.02.008S46248331Shan, S., & Li, S. (2020). Fire-induced progressive collapse mechanisms of steel frames with partial infill walls. Structures, 25, 347-359. doi:10.1016/j.istruc.2020.03.023Shakib, H., Zakersalehi, M., Jahangiri, V., & Zamanian, R. (2020). Evaluation of Plasco Building fire-induced progressive collapse. Structures, 28, 205-224. doi:10.1016/j.istruc.2020.08.058Horová, K., Jána, T., & Wald, F. (2013). Temperature heterogeneity during travelling fire on experimental building. Advances in Engineering Software, 62-63, 119-130. doi:10.1016/j.advengsoft.2013.05.001Xu, L., & Zhuang, Y. (2012). Storey-based stability of unbraced steel frames at elevated temperature. Journal of Constructional Steel Research, 78, 79-87. doi:10.1016/j.jcsr.2012.06.010Jacques, L., Béchet, E., & Kerschen, G. (2017). Finite element model reduction for space thermal analysis. Finite Elements in Analysis and Design, 127, 6-15. doi:10.1016/j.finel.2017.01.001B.D. R, M. SK. Behaviour of steel columns with realistic boundary restraints under standard fire. Structures 2020;28:626–37. https://doi.org/https://doi.org/10.1016/j.istruc.2020.08.028.Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Loma-Ossorio, E. (2019). Valencia bridge fire tests: Validation of simplified and advanced numerical approaches to model bridge fire scenarios. Advances in Engineering Software, 128, 55-68. doi:10.1016/j.advengsoft.2018.11.003Jeffers, A. E., & Beata, P. A. (2014). Generalized shell heat transfer element for modeling the thermal response of non-uniformly heated structures. Finite Elements in Analysis and Design, 83, 58-67. doi:10.1016/j.finel.2014.01.003Rigobello, R., Coda, H. B., & Munaiar Neto, J. (2014). A 3D solid-like frame finite element applied to steel structures under high temperatures. Finite Elements in Analysis and Design, 91, 68-83. doi:10.1016/j.finel.2014.07.005Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Rinaudo, P. (2017). Valencia bridge fire tests: Experimental study of a composite bridge under fire. Journal of Constructional Steel Research, 138, 538-554. doi:10.1016/j.jcsr.2017.08.008Peris-Sayol, G., Paya-Zaforteza, I., Alos-Moya, J., & Hospitaler, A. (2015). Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios. Computers & Structures, 158, 333-345. doi:10.1016/j.compstruc.2015.06.003Quiel, S. E., Moreyra Garlock, M. E., & Paya-Zaforteza, I. (2011). Closed-Form Procedure for Predicting the Capacity and Demand of Steel Beam-Columns under Fire. Journal of Structural Engineering, 137(9), 967-976. doi:10.1061/(asce)st.1943-541x.0000443Davidson, M. T., Harik, I. E., & Davis, D. B. (2013). Fire Impact and Passive Fire Protection of Infrastructure: State of the Art. Journal of Performance of Constructed Facilities, 27(2), 135-143. doi:10.1061/(asce)cf.1943-5509.0000295Allam, A., Nassif, A., & Nadjai, A. (2019). Behaviour of restrained steel beam at elevated temperature – parametric studies. Journal of Structural Fire Engineering, 10(3), 324-339. doi:10.1108/jsfe-11-2018-0036Santiago A, Haremza C, Simões da Silva L, Rodrigues JP. Numerical behaviour of steel columns subject to localized fire loading. In: Topping BH V., Costa Neves LF, Barros RC, editors. Proc. Twelfth Int. Conf. Civil, Struct. Environ. Eng. Comput., Stirlingshire, Scotland: Civil-Comp Press; 2009.Burges I, Alexandrou M. Composite beams. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Verif. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014.Burges I, Alexandrou M. Steel beams. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Verif. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014.Burgess I, Plank R, Shephered P. Vulcan 2019.Santiago A, Haremza C, Lopes F, Franssen JM. Numerical behaviour of steel columns under localized fire loading. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Exp. Valid. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014.Franssen, J. M., Cooke, G. M. E., & Latham, D. J. (1995). Numerical simulation of a full scale fire test on a loaded steel framework. Journal of Constructional Steel Research, 35(3), 377-408. doi:10.1016/0143-974x(95)00010-sSrivastava, G., & Ravi Prakash, P. (2017). An integrated framework for nonlinear analysis of plane frames exposed to fire using the direct stiffness method. Computers & Structures, 190, 173-185. doi:10.1016/j.compstruc.2017.05.013EN 1993-1-2. Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design. Brussels: European Committee for Standardization; 2005.EN 1992-1-2. Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design. Brussels: European Committee for Standardization; 2004.Purkiss JA, Li LY. Fire safety engineering design of structures. 3rd Editio. Boca Raton: CRC Press; 2013. https://doi.org/10.1201/b16059.Ansys. ANSYS Engineering Analysis System. User manual. Canonsburg, Pensilvania: Houston, Pa. : Swanson Analysis Systems, 2019; 2019.Oñate E. Structural Analysis with the Finite Element Method Linear Statics: Volume 2. Beams, Plates and Shells. 1st ed. Barcelona: Springer; 2013.Magisano, D., Liguori, F., Leonetti, L., de Gregorio, D., Zuccaro, G., & Garcea, G. (2019). A quasi-static nonlinear analysis for assessing the fire resistance of reinforced concrete 3D frames exploiting time-dependent yield surfaces. Computers & Structures, 212, 327-342. doi:10.1016/j.compstruc.2018.11.005Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061. doi:10.1016/j.engstruct.2019.11006

    Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model

    Full text link
    The use of subcooled flow boiling is a convenient option for the thermal management of downsized engines, but proper control of the phenomenon requires the accurate prediction of heat transfer at the coolant side, for which the use of computational fluid dynamics is a suitable alternative. While in most of the applications found to engine cooling a single-fluid equivalent method is used, in this paper the performance of a twofluid method is evaluated in engine-like conditions with special interest in the low velocity range. The results indicate that the description of the process at low velocities provided by the two-fluid method is better than that of a single-fluid model, while model calibration is simpler and more robust and the computational cost is substantially reduced.The equipment used in this work was partially supported by FEDER project funds 'Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte' (grant number FEDER-ICTS-2012-06), framed in the operational program of the unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. This work was partially supported by Senacyt Panama (Omar Cornejo, grant 797-7-2)Torregrosa, AJ.; Olmeda González, PC.; Gil Megías, A.; Cornejo, O. (2015). Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(13):1830-1839. https://doi.org/10.1177/0954407015571674S1830183922913Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209-1215. doi:10.1243/0954407042580110Burke, R. D., Brace, C. J., Hawley, J. G., & Pegg, I. (2010). Review of the systems analysis of interactions between the thermal, lubricant, and combustion processes of diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(5), 681-704. doi:10.1243/09544070jauto1301Steiner, H., Brenn, G., Ramstorfer, F., & Breitschadel, B. (2011). Increased Cooling Power with Nucleate Boiling Flow in Automotive Engine Applications. New Trends and Developments in Automotive System Engineering. doi:10.5772/13489Li, Z., Huang, R.-H., & Wang, Z.-W. (2011). Subcooled boiling heat transfer modelling for internal combustion engine applications. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(3), 301-311. doi:10.1177/0954407011417349Hawley, J. G., Wilson, M., Campbell, N. A. F., Hammond, G. P., & Leathard, M. J. (2004). Predicting boiling heat transfer using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(5), 509-520. doi:10.1243/095440704774061165Li, G., Fu, S., Liu, Y., Liu, Y., Bai, S., & Cheng, L. (2009). A homogeneous flow model for boiling heat transfer calculation based on single phase flow. Energy Conversion and Management, 50(7), 1862-1868. doi:10.1016/j.enconman.2008.12.029Chen, J. C. (1966). Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Industrial & Engineering Chemistry Process Design and Development, 5(3), 322-329. doi:10.1021/i260019a023Torregrosa, A. J., Broatch, A., Olmeda, P., & Cornejo, O. (2014). Experiments on subcooled flow boiling in I.C. engine-like conditions at low flow velocities. Experimental Thermal and Fluid Science, 52, 347-354. doi:10.1016/j.expthermflusci.2013.10.004Robinson, K., Hawley, J. G., & Campbell, N. A. F. (2003). Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(10), 877-889. doi:10.1243/095440703769683289Lee, H. S., & O’Neill, A. T. (2009). Forced convection and nucleate boiling on a small flat heater in a rectangular duct: Experiments with two working fluids, a 50–50 ethylene glycol—water mixture, and water. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(2), 203-219. doi:10.1243/09544070jauto1008Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Hernandez-Perez, V., Abdulkadir, M., & Azzopardi, B. J. (2011). Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe. The Journal of Computational Multiphase Flows, 3(1), 13-26. doi:10.1260/1757-482x.3.1.13Pioro, I. L., Rohsenow, W., & Doerffer, S. S. (2004). Nucleate pool-boiling heat transfer. II: assessment of prediction methods. International Journal of Heat and Mass Transfer, 47(23), 5045-5057. doi:10.1016/j.ijheatmasstransfer.2004.06.020Saiz Jabardo, J. M. (2010). An Overview of Surface Roughness Effects on Nucleate Boiling Heat Transfer~!2009-10-31~!2010-01-01~!2010-04-16~! The Open Transport Phenomena Journal, 2(1), 24-34. doi:10.2174/1877729501002010024Podowski, M. Z. (2012). TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER. Nuclear Engineering and Technology, 44(8), 889-896. doi:10.5516/net.02.2012.720Lo, S., & Osman, J. (2012). CFD Modeling of Boiling Flow in PSBT 5×5 Bundle. Science and Technology of Nuclear Installations, 2012, 1-8. doi:10.1155/2012/795935Del Valle, V. H., & Kenning, D. B. R. (1985). Subcooled flow boiling at high heat flux. International Journal of Heat and Mass Transfer, 28(10), 1907-1920. doi:10.1016/0017-9310(85)90213-3Cole, R. (1960). A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal, 6(4), 533-538. doi:10.1002/aic.69006040
    corecore