47,624 research outputs found

    Why Delannoy numbers?

    Full text link
    This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.Comment: Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inference

    Stacked polytopes and tight triangulations of manifolds

    Get PDF
    Tightness of a triangulated manifold is a topological condition, roughly meaning that any simplexwise linear embedding of the triangulation into euclidean space is "as convex as possible". It can thus be understood as a generalization of the concept of convexity. In even dimensions, super-neighborliness is known to be a purely combinatorial condition which implies the tightness of a triangulation. Here we present other sufficient and purely combinatorial conditions which can be applied to the odd-dimensional case as well. One of the conditions is that all vertex links are stacked spheres, which implies that the triangulation is in Walkup's class K(d)\mathcal{K}(d). We show that in any dimension d≥4d\geq 4 \emph{tight-neighborly} triangulations as defined by Lutz, Sulanke and Swartz are tight. Furthermore, triangulations with kk-stacked vertex links and the centrally symmetric case are discussed.Comment: 28 pages, 2 figure

    Note on Ward-Horadam H(x) - binomials' recurrences and related interpretations, II

    Full text link
    We deliver here second new H(x)−binomials′\textit{H(x)}-binomials' recurrence formula, were H(x)−binomials′H(x)-binomials' array is appointed by Ward−HoradamWard-Horadam sequence of functions which in predominantly considered cases where chosen to be polynomials . Secondly, we supply a review of selected related combinatorial interpretations of generalized binomial coefficients. We then propose also a kind of transfer of interpretation of p,q−binomialp,q-binomial coefficients onto q−binomialq-binomial coefficients interpretations thus bringing us back to Gyo¨rgyPoˊlyaGy{\"{o}}rgy P\'olya and Donald Ervin Knuth relevant investigation decades ago.Comment: 57 pages, 8 figure
    • …
    corecore