481,168 research outputs found

    Diophantine Sets. Part II

    Get PDF
    The article is the next in a series aiming to formalize the MDPR-theorem using the Mizar proof assistant [3], [6], [4]. We analyze four equations from the Diophantine standpoint that are crucial in the bounded quantifier theorem, that is used in one of the approaches to solve the problem.Based on our previous work [1], we prove that the value of a given binomial coefficient and factorial can be determined by its arguments in a Diophantine way. Then we prove that two productsz=∏i=1x(1+i⋅y),        z=∏i=1x(y+1-j),      (0.1)where y > x are Diophantine.The formalization follows [10], Z. Adamowicz, P. Zbierski [2] as well as M. Davis [5].Institute of Informatics, University of BiaƂystok, PolandMarcin Acewicz and Karol Pąk. Basic Diophantine relations. Formalized Mathematics, 26(2):175–181, 2018. doi:10.2478/forma-2018-0015.Zofia Adamowicz and PaweƂ Zbierski. Logic of Mathematics: A Modern Course of Classical Logic. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley-Interscience, 1997.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Martin Davis. Hilbert’s tenth problem is unsolvable. The American Mathematical Monthly, Mathematical Association of America, 80(3):233–269, 1973. doi:10.2307/2318447.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Artur KorniƂowicz and Karol Pąk. Basel problem – preliminaries. Formalized Mathematics, 25(2):141–147, 2017. doi:10.1515/forma-2017-0013.Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181–187, 2007. doi:10.2478/v10037-007-0022-7.Karol Pąk. Diophantine sets. Preliminaries. Formalized Mathematics, 26(1):81–90, 2018. doi:10.2478/forma-2018-0007.Craig Alan Smorynski. Logical Number Theory I, An Introduction. Universitext. Springer-Verlag Berlin Heidelberg, 1991. ISBN 978-3-642-75462-3.Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825–829, 2001.RafaƂ Ziobro. On subnomials. Formalized Mathematics, 24(4):261–273, 2016. doi:10.1515/forma-2016-0022.27219720

    Formalization of the MRDP Theorem in the Mizar System

    Get PDF
    This article is the final step of our attempts to formalize the negative solution of Hilbert’s tenth problem.In our approach, we work with the Pell’s Equation defined in [2]. We analyzed this equation in the general case to show its solvability as well as the cardinality and shape of all possible solutions. Then we focus on a special case of the equation, which has the form x2 − (a2 − 1)y2 = 1 [8] and its solutions considered as two sequences {xi(a)}i=0∞,{yi(a)}i=0∞. We showed in [1] that the n-th element of these sequences can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities, or more precisely that the equation x = yi(a) is Diophantine. Following the post-Matiyasevich results we show that the equality determined by the value of the power function y = xz is Diophantine, and analogously property in cases of the binomial coe cient, factorial and several product [9].In this article, we combine analyzed so far Diophantine relation using conjunctions, alternatives as well as substitution to prove the bounded quantifier theorem. Based on this theorem we prove MDPR-theorem that every recursively enumerable set is Diophantine, where recursively enumerable sets have been defined by the Martin Davis normal form.The formalization by means of Mizar system [5], [7], [4] follows [10], Z. Adamowicz, P. Zbierski [3] as well as M. Davis [6].Institute of Informatics, University of BiaƂystok, PolandMarcin Acewicz and Karol Pąk. Basic Diophantine relations. Formalized Mathematics, 26(2):175–181, 2018. doi:10.2478/forma-2018-0015.Marcin Acewicz and Karol Pąk. Pell’s equation. Formalized Mathematics, 25(3):197–204, 2017. doi:10.1515/forma-2017-0019.Zofia Adamowicz and PaweƂ Zbierski. Logic of Mathematics: A Modern Course of Classical Logic. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley-Interscience, 1997.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Martin Davis. Hilbert’s tenth problem is unsolvable. The American Mathematical Monthly, Mathematical Association of America, 80(3):233–269, 1973. doi:10.2307/2318447.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Karol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315–322, 2017. doi:10.1515/forma-2017-0029.Karol Pąk. Diophantine sets. Part II. Formalized Mathematics, 27(2):197–208, 2019. doi:10.2478/forma-2019-0019.Craig Alan Smorynski. Logical Number Theory I, An Introduction. Universitext. Springer-Verlag Berlin Heidelberg, 1991. ISBN 978-3-642-75462-3.27220922

    Intuitionistic Propositional Calculus in the Extended Framework with Modal Operator. Part II

    Get PDF
    This paper is a continuation of InouÂŽe [5]. As already mentioned in the paper, a number of intuitionistic provable formulas are given with a Hilbert-style proof. For that, we make use of a family of intuitionistic deduction theorems, which are also presented in this paper by means of Mizar system [2], [1]. Our axiom system of intuitionistic propositional logic IPC is based on the propositional subsystem of H1-IQC in Troelstra and van Dalen [6, p. 68]. We also owe Heyting [4] and van Dalen [7]. Our treatment of a set-theoretic intuitionistic deduction theorem is due to Agata DarmochwaƂ’s Mizar article “Calculus of Quantifiers. Deduction Theorem” [3].Takao InouĂ© - Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan; Graduate School of Science and Engineering, Hosei University, Tokyo, Japan; Department of Applied Informatics, Faculty of Science and Engineering, Hosei University, Tokyo, JapanRiku Hanaoka - Keyaki-Sou 403, Midori-cho 5-17-27, Koganei-city, 184-0003, Tokyo, JapanGrzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-817.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Agata DarmochwaƂ. Calculus of quantifiers. Deduction theorem. Formalized Mathematics, 2(2):309–312, 1991.Arend Heyting. Intuitionism. An introduction. Elsevier, Amsterdam, 3rd revised ed., 1971.Takao InouĂ©. Intuitionistic propositional calculus in the extended framework with modal operator. Part I. Formalized Mathematics, 11(3):259–266, 2003.Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics. An introduction. Volume I, volume 121 of Studies in Logic and the Foundations of Mathematics. Amsterdam etc.: North-Holland, 1988. ISBN 0-444-70506-6.Dirk van Dalen. Logic and Structure. London: Springer, 2013. ISBN 978-1-4471-4557-8; 978-1-4471-4558-5. doi:10.1007/978-1-4471-4558-5.30111

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Unifying Functional Interpretations: Past and Future

    Full text link
    This article surveys work done in the last six years on the unification of various functional interpretations including G\"odel's dialectica interpretation, its Diller-Nahm variant, Kreisel modified realizability, Stein's family of functional interpretations, functional interpretations "with truth", and bounded functional interpretations. Our goal in the present paper is twofold: (1) to look back and single out the main lessons learnt so far, and (2) to look forward and list several open questions and possible directions for further research.Comment: 18 page
    • 

    corecore