397,463 research outputs found

    Genetic algorithms for the scheduling in additive manufacturing

    Get PDF
    [EN] Genetic Algorithms (GAs) are introduced to tackle the packing problem. The scheduling in Additive Manufacturing (AM) is also dealt with to set up a managed market, called “Lonja3D”. This will enable to determine an alternative tool through the combinatorial auctions, wherein the customers will be able to purchase the products at the best prices from the manufacturers. Moreover, the manufacturers will be able to optimize the production capacity and to decrease the operating costs in each case.This research has been partially financed by the project: “Lonja de Impresión 3D para la Industria 4.0 y la Empresa Digital (LONJA3D)” funded by the Regional Government of Castile and Leon and the European Regional Development Fund (ERDF, FEDER) with grant VA049P17Castillo-Rivera, S.; De Antón, J.; Del Olmo, R.; Pajares, J.; López-Paredes, A. (2020). Genetic algorithms for the scheduling in additive manufacturing. International Journal of Production Management and Engineering. 8(2):59-63. https://doi.org/10.4995/ijpme.2020.12173OJS596382Ahsan, A., Habib, A., Khoda, B. (2015). Resource based process planning for additive manufacturing. Computer-Aided Design, 69, 112-125. https://doi.org/10.1016/j.cad.2015.03.006Araújo, L., Özcan, E., Atkin, J., Baumers, M., Tuck, C., Hague, R. (2015). Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks. 26th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, 401-410.Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55: 155-162. https://doi.org/10.1016/j.bushor.2011.11.003Canellidis, V., Dedoussis, V., Mantzouratos, N., Sofianopoulou, S. (2006). Preprocessing methodology for optimizing stereolithography apparatus build performance. Computers in Industry, 57, 424-436. https://doi.org/10.1016/j.compind.2006.02.004Chergui, A., Hadj-Hamoub, K., Vignata, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, 292-301. https://doi.org/10.1016/j.cie.2018.09.048Demirel, E., Özelkan, E.C., Lim, C. (2018). Aggregate planning with flexibility requirements profile. International Journal of Production Economics, 202, 45-58. https://doi.org/10.1016/j.ijpe.2018.05.001Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R., Todisco, V. (2018). A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling. International Journal of Industrial Engineering Computations, 9, 423-438. https://doi.org/10.5267/j.ijiec.2018.1.001Hopper, E., Turton, B. (1997). Application of genetic algorithms to packing problems - A Review. Proceedings of the 2nd Online World Conference on Soft Computing in Engineering Design and Manufacturing, Springer Verlag, London, 279-288. https://doi.org/10.1007/978-1-4471-0427-8_30Ikonen, I., Biles, W.E., Kumar, A., Wissel, J.C., Ragade, R.K. (1997). A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes. ICGA, 591-598.Kim, K.H., Egbelu, P.J. (1999). Scheduling in a production environment with multiple process plans per job. International Journal of Production Research, 37, 2725-2753. https://doi.org/10.1080/002075499190491Lawrynowicz, A. (2011). Genetic algorithms for solving scheduling problems in manufacturing systems. Foundations of Management, 3(2), 7-26. https://doi.org/10.2478/v10238-012-0039-2Li, Q., Kucukkoc, I., Zhang, D. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 157-172. https://doi.org/10.1016/j.cor.2017.01.013Milošević, M., Lukić, D., Đurđev, M., Vukman, J., Antić, A. (2016). Genetic Algorithms in Integrated Process Planning and Scheduling-A State of The Art Review. Proceedings in Manufacturing Systems, 11(2), 83-88.Pour, M.A., Zanardini, M., Bacchetti, A., Zanoni, S. (2016). Additive manufacturing impacts on productions and logistics systems. IFAC, 49(12), 1679-1684. https://doi.org/10.1016/j.ifacol.2016.07.822Wilhelm, W.E., Shin, H.M. (1985). Effectiveness of Alternate Operations in a Flexible Manufacturing System. International Journal of Production Research, 23(1), 65-79. https://doi.org/10.1080/00207548508904691Xirouchakis, P., Kiritsis, D., Persson, J.G. (1998). A Petri net Technique for Process Planning Cost Estimation. Annals of the CIRP, 47(1), 427-430. https://doi.org/10.1016/S0007-8506(07)62867-4Zhang, Y., Bernard, A., Gupta, R.K., Harik, R. (2014). Evaluating the design for additive manufacturing: a process planning perspective. Procedia CIRP, 21, 144-150. https://doi.org/10.1016/j.procir.2014.03.17

    Some Results on the Complexity of Numerical Integration

    Full text link
    This is a survey (21 pages, 124 references) written for the MCQMC 2014 conference in Leuven, April 2014. We start with the seminal paper of Bakhvalov (1959) and end with new results on the curse of dimension and on the complexity of oscillatory integrals. Some small errors of earlier versions are corrected

    New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid

    Full text link
    Seismic imaging of the mantle has revealed large and small scale heterogeneities in the lower mantle; specifically structures known as large low shear velocity provinces (LLSVP) below Africa and the South Pacific. Most interpretations propose that the heterogeneities are compositional in nature, differing in composition from the overlying mantle, an interpretation that would be consistent with chemical geodynamic models. Numerical modeling of persistent compositional interfaces presents challenges, even to state-of-the-art numerical methodology. For example, some numerical algorithms for advecting the compositional interface cannot maintain a sharp compositional boundary as the fluid migrates and distorts with time dependent fingering due to the numerical diffusion that has been added in order to maintain the upper and lower bounds on the composition variable and the stability of the advection method. In this work we present two new algorithms for maintaining a sharper computational boundary than the advection methods that are currently openly available to the computational mantle convection community; namely, a Discontinuous Galerkin method with a Bound Preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these two new methods with two approaches commonly used for modeling the advection of two distinct, thermally driven, compositional fields in mantle convection problems; namely, an approach based on a high-order accurate finite element method advection algorithm that employs an artificial viscosity technique to maintain the upper and lower bounds on the composition variable as well as the stability of the advection algorithm and the advection of particles that carry a scalar quantity representing the location of each compositional field. All four of these algorithms are implemented in the open source FEM code ASPECT

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Finding Near-Optimal Independent Sets at Scale

    Full text link
    The independent set problem is NP-hard and particularly difficult to solve in large sparse graphs. In this work, we develop an advanced evolutionary algorithm, which incorporates kernelization techniques to compute large independent sets in huge sparse networks. A recent exact algorithm has shown that large networks can be solved exactly by employing a branch-and-reduce technique that recursively kernelizes the graph and performs branching. However, one major drawback of their algorithm is that, for huge graphs, branching still can take exponential time. To avoid this problem, we recursively choose vertices that are likely to be in a large independent set (using an evolutionary approach), then further kernelize the graph. We show that identifying and removing vertices likely to be in large independent sets opens up the reduction space---which not only speeds up the computation of large independent sets drastically, but also enables us to compute high-quality independent sets on much larger instances than previously reported in the literature.Comment: 17 pages, 1 figure, 8 tables. arXiv admin note: text overlap with arXiv:1502.0168
    corecore