148 research outputs found

    Temporal - spatial recognizer for multi-label data

    Get PDF
    Pattern recognition is an important artificial intelligence task with practical applications in many fields such as medical and species distribution. Such application involves overlapping data points which are demonstrated in the multi- label dataset. Hence, there is a need for a recognition algorithm that can separate the overlapping data points in order to recognize the correct pattern. Existing recognition methods suffer from sensitivity to noise and overlapping points as they could not recognize a pattern when there is a shift in the position of the data points. Furthermore, the methods do not implicate temporal information in the process of recognition, which leads to low quality of data clustering. In this study, an improved pattern recognition method based on Hierarchical Temporal Memory (HTM) is proposed to solve the overlapping in data points of multi- label dataset. The imHTM (Improved HTM) method includes improvement in two of its components; feature extraction and data clustering. The first improvement is realized as TS-Layer Neocognitron algorithm which solves the shift in position problem in feature extraction phase. On the other hand, the data clustering step, has two improvements, TFCM and cFCM (TFCM with limit- Chebyshev distance metric) that allows the overlapped data points which occur in patterns to be separated correctly into the relevant clusters by temporal clustering. Experiments on five datasets were conducted to compare the proposed method (imHTM) against statistical, template and structural pattern recognition methods. The results showed that the percentage of success in recognition accuracy is 99% as compared with the template matching method (Featured-Based Approach, Area-Based Approach), statistical method (Principal Component Analysis, Linear Discriminant Analysis, Support Vector Machines and Neural Network) and structural method (original HTM). The findings indicate that the improved HTM can give an optimum pattern recognition accuracy, especially the ones in multi- label dataset

    Group Behavior Learning in Multi-Agent Systems Based on Social Interaction Among Agents

    Get PDF
    Research on multi-agent systems, in which autonomous agents are able to learn cooperative behavior, has been the subject of rising expectations in recent years. We have aimed at the group behavior generation of the multi-agents who have high levels of autonomous learning ability, like that of human beings, through social interaction between agents to acquire cooperative behavior. The sharing of environment states can improve cooperative ability, and the changing state of the environment in the information shared by agents will improve agents’ cooperative ability. On this basis, we use reward redistribution among agents to reinforce group behavior, and we propose a method of constructing a multi-agent system with an autonomous group creation ability. This is able to strengthen the cooperative behavior of the group as social agents

    Study on the predictions of gene function and protein structure using multi-SVM and hybrid EDA

    Get PDF
    制度:新 ; 報告番号:甲3199号 ; 学位の種類:博士(工学) ; 授与年月日:2011/3/15 ; 早大学位記番号:新549

    Rough-Set-Based Interrelationship Mining for Incomplete Decision Tables

    Get PDF
    Rough-set-based interrelationship mining enables to extract characteristics by comparing the values of the same object between different attributes.To apply this interrelationship mining to incomplete decision tables with null values, in this study, we discuss the treatment of null values in interrelationships between attributes. We introduce three types of null values for interrelated condition attributes and formulate a similarity relation by such attributes with these null values

    Finding Multiple Solutions of Multimodal Optimization Using Spiral Optimization Algorithm with Clustering

    Get PDF
    Multimodal optimization is one of the interesting problems in optimization which arises frequently in a widerange of engineering and practical applications. The goal of this problem is to find all of optimum solutions in a single run. Some algorithms fail to find all solutions that have been proven their existence analytically. In our paper [1], a method is proposed to find the roots of a system of non-linear equations using a clustering technique that combine with Spiral Optimization algorithm and Sobol sequence of points. An interesting benefit using this method is that the same inputs will give the same results. Most of the time this does not happen in meta-heuristic algorithms using random factors. Now the method is modified to find solutions of multimodal optimization problems. Generally in an optimization problem, the differential form of the objective function is needed. In this paper, the proposed method is to find optimum points of general multimodal functions that its differential form is not required. Several problems with benchmark functions have been examined using our method and they give good result

    Deep Learning Modalities for Biometric Alteration Detection in 5G Networks-Based Secure Smart Cities

    Get PDF
    Smart cities and their applications have become attractive research fields birthing numerous technologies. Fifth generation (5G) networks are important components of smart cities, where intelligent access control is deployed for identity authentication, online banking, and cyber security. To assure secure transactions and to protect user’s identities against cybersecurity threats, strong authentication techniques should be used. The prevalence of biometrics, such as fingerprints, in authentication and identification makes the need to safeguard them important across different areas of smart applications. Our study presents a system to detect alterations to biometric modalities to discriminate pristine, adulterated, and fake biometrics in 5G-based smart cities. Specifically, we use deep learning models based on convolutional neural networks (CNN) and a hybrid model that combines CNN with convolutional long-short term memory (ConvLSTM) to compute a three-tier probability that a biometric has been tempered. Simulation-based experiments indicate that the alteration detection accuracy matches those recorded in advanced methods with superior performance in terms of detecting central rotation alteration to fingerprints. This makes the proposed system a veritable solution for different biometric authentication applications in secure smart cities
    corecore