38 research outputs found

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Covariance and Gramian matrices in control and systems theory.

    Get PDF
    Covariance and Gramian matrices in control and systems theory and pattern recognition are studied in the context of reduction of dimensionality and hence complexity of large-scale systems. This is achieved by the removal of redundant or 'almost' redundant information contained in the covariance and Grarrdan matrices. The Karhunen-Loeve expansion (principal component analysis) and its extensions and the singular value decomposition of matrices provide the framework for the work presented in the thesis. The results given for linear dynamical systems are based on controllability and observability Gramians and some new developments in singular perturbational analysis are also presented

    AFIT School of Engineering Contributions to Air Force Research and Technology. Calendar Year 1972

    Get PDF
    This report contains abstracts of Master of Science Theses, Doctoral Dissertations, and faculty publications completed during the 1972 calendar year at the School of Engineering, Air Force Institute of Technology, at Wright-Patterson Air Force Base, Ohio

    Cosmic cartography

    Get PDF
    The cosmic origin and evolution is encoded in the large-scale matter distribution observed in astronomical surveys. Galaxy redshift surveys have become in the recent years one of the best probes for cosmic large-scale structures. They are complementary to other information sources like the cosmic microwave background, since they trace a different epoch of the Universe, the time after reionization at which the Universe became transparent, covering about the last twelve billion years. Regarding that the Universe is about thirteen billion years old, galaxy surveys cover a huge range of time, even if the sensitivity limitations of the detectors do not permit to reach the furthermost sources in the transparent Universe. This makes galaxy surveys extremely interesting for cosmological evolution studies. The observables, galaxy position in the sky, galaxy ma gnitude and redshift, however, give an incomplete representation of the real structures in the Universe, not only due to the limitations and uncertainties in the measurements, but also due to their biased nature. They trace the underlying continuous dark matter field only partially being a discrete sample of the luminous baryonic distribution. In addition, galaxy catalogues are plagued by many complications. Some have a physical foundation, as mentioned before, others are due to the observation process. The problem of reconstructing the underlying density field, which permits to make cosmological studies, thus requires a statistical approach. This thesis describes a cosmic cartography project. The necessary concepts, mathematical frame-work, and numerical algorithms are thoroughly analyzed. On that basis a Bayesian software tool is implemented. The resulting Argo-code allows to investigate the characteristics of the large-scale cosmological structure with unprecedented accuracy and flexibility. This is achieved by jointly estimating the large-scale density along with a variety of other parameters ---such as the cosmic flow, the small-scale peculiar velocity field, and the power-spectrum--- from the information provided by galaxy redshift surveys. Furthermore, Argo is capable of dealing with many observational issues like mask-effects, galaxy selection criteria, blurring and noise in a very efficient implementation of an operator based formalism which was carefully derived for this purpose. Thanks to the achieved high efficiency of Argo the application of iterative sampling algorithms based on Markov Chain Monte Carlo is now possible. This will ultimately lead to a full description of the matter distribution with all its relevant parameters like velocities, power spectra, galaxy bias, etc., including the associated uncertainties. Some applications are shown, in which such techniques are used. A rejection sampling scheme is successfully applied to correct for the observational redshift-distortions effect which is especially severe in regimes of non-linear structure formation, causing the so-called finger-of-god effect. Also a Gibbs-sampling algorithm for power-spectrum determination is presented and some preliminary results are shown in which the correct level and shape of the power-spectrum is recovered solely from the data. We present in an additional appendix the gravitational collapse and subsequent neutrino-driven explosion of the low-mass end of stars that undergo core-collapse Supernovae. We obtain results which are for the first time compatible with the Crab Nebula
    corecore