5,629 research outputs found

    Jointly Modeling Embedding and Translation to Bridge Video and Language

    Full text link
    Automatically describing video content with natural language is a fundamental challenge of multimedia. Recurrent Neural Networks (RNN), which models sequence dynamics, has attracted increasing attention on visual interpretation. However, most existing approaches generate a word locally with given previous words and the visual content, while the relationship between sentence semantics and visual content is not holistically exploited. As a result, the generated sentences may be contextually correct but the semantics (e.g., subjects, verbs or objects) are not true. This paper presents a novel unified framework, named Long Short-Term Memory with visual-semantic Embedding (LSTM-E), which can simultaneously explore the learning of LSTM and visual-semantic embedding. The former aims to locally maximize the probability of generating the next word given previous words and visual content, while the latter is to create a visual-semantic embedding space for enforcing the relationship between the semantics of the entire sentence and visual content. Our proposed LSTM-E consists of three components: a 2-D and/or 3-D deep convolutional neural networks for learning powerful video representation, a deep RNN for generating sentences, and a joint embedding model for exploring the relationships between visual content and sentence semantics. The experiments on YouTube2Text dataset show that our proposed LSTM-E achieves to-date the best reported performance in generating natural sentences: 45.3% and 31.0% in terms of BLEU@4 and METEOR, respectively. We also demonstrate that LSTM-E is superior in predicting Subject-Verb-Object (SVO) triplets to several state-of-the-art techniques

    Learning Fashion Compatibility with Bidirectional LSTMs

    Full text link
    The ubiquity of online fashion shopping demands effective recommendation services for customers. In this paper, we study two types of fashion recommendation: (i) suggesting an item that matches existing components in a set to form a stylish outfit (a collection of fashion items), and (ii) generating an outfit with multimodal (images/text) specifications from a user. To this end, we propose to jointly learn a visual-semantic embedding and the compatibility relationships among fashion items in an end-to-end fashion. More specifically, we consider a fashion outfit to be a sequence (usually from top to bottom and then accessories) and each item in the outfit as a time step. Given the fashion items in an outfit, we train a bidirectional LSTM (Bi-LSTM) model to sequentially predict the next item conditioned on previous ones to learn their compatibility relationships. Further, we learn a visual-semantic space by regressing image features to their semantic representations aiming to inject attribute and category information as a regularization for training the LSTM. The trained network can not only perform the aforementioned recommendations effectively but also predict the compatibility of a given outfit. We conduct extensive experiments on our newly collected Polyvore dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.Comment: ACM MM 1

    The Long-Short Story of Movie Description

    Full text link
    Generating descriptions for videos has many applications including assisting blind people and human-robot interaction. The recent advances in image captioning as well as the release of large-scale movie description datasets such as MPII Movie Description allow to study this task in more depth. Many of the proposed methods for image captioning rely on pre-trained object classifier CNNs and Long-Short Term Memory recurrent networks (LSTMs) for generating descriptions. While image description focuses on objects, we argue that it is important to distinguish verbs, objects, and places in the challenging setting of movie description. In this work we show how to learn robust visual classifiers from the weak annotations of the sentence descriptions. Based on these visual classifiers we learn how to generate a description using an LSTM. We explore different design choices to build and train the LSTM and achieve the best performance to date on the challenging MPII-MD dataset. We compare and analyze our approach and prior work along various dimensions to better understand the key challenges of the movie description task

    From Deterministic to Generative: Multi-Modal Stochastic RNNs for Video Captioning

    Full text link
    Video captioning in essential is a complex natural process, which is affected by various uncertainties stemming from video content, subjective judgment, etc. In this paper we build on the recent progress in using encoder-decoder framework for video captioning and address what we find to be a critical deficiency of the existing methods, that most of the decoders propagate deterministic hidden states. Such complex uncertainty cannot be modeled efficiently by the deterministic models. In this paper, we propose a generative approach, referred to as multi-modal stochastic RNNs networks (MS-RNN), which models the uncertainty observed in the data using latent stochastic variables. Therefore, MS-RNN can improve the performance of video captioning, and generate multiple sentences to describe a video considering different random factors. Specifically, a multi-modal LSTM (M-LSTM) is first proposed to interact with both visual and textual features to capture a high-level representation. Then, a backward stochastic LSTM (S-LSTM) is proposed to support uncertainty propagation by introducing latent variables. Experimental results on the challenging datasets MSVD and MSR-VTT show that our proposed MS-RNN approach outperforms the state-of-the-art video captioning benchmarks

    Read, Watch, and Move: Reinforcement Learning for Temporally Grounding Natural Language Descriptions in Videos

    Full text link
    The task of video grounding, which temporally localizes a natural language description in a video, plays an important role in understanding videos. Existing studies have adopted strategies of sliding window over the entire video or exhaustively ranking all possible clip-sentence pairs in a pre-segmented video, which inevitably suffer from exhaustively enumerated candidates. To alleviate this problem, we formulate this task as a problem of sequential decision making by learning an agent which regulates the temporal grounding boundaries progressively based on its policy. Specifically, we propose a reinforcement learning based framework improved by multi-task learning and it shows steady performance gains by considering additional supervised boundary information during training. Our proposed framework achieves state-of-the-art performance on ActivityNet'18 DenseCaption dataset and Charades-STA dataset while observing only 10 or less clips per video.Comment: AAAI 201

    Video Storytelling: Textual Summaries for Events

    Full text link
    Bridging vision and natural language is a longstanding goal in computer vision and multimedia research. While earlier works focus on generating a single-sentence description for visual content, recent works have studied paragraph generation. In this work, we introduce the problem of video storytelling, which aims at generating coherent and succinct stories for long videos. Video storytelling introduces new challenges, mainly due to the diversity of the story and the length and complexity of the video. We propose novel methods to address the challenges. First, we propose a context-aware framework for multimodal embedding learning, where we design a Residual Bidirectional Recurrent Neural Network to leverage contextual information from past and future. Second, we propose a Narrator model to discover the underlying storyline. The Narrator is formulated as a reinforcement learning agent which is trained by directly optimizing the textual metric of the generated story. We evaluate our method on the Video Story dataset, a new dataset that we have collected to enable the study. We compare our method with multiple state-of-the-art baselines, and show that our method achieves better performance, in terms of quantitative measures and user study.Comment: Published in IEEE Transactions on Multimedi

    Multi-Task Video Captioning with Video and Entailment Generation

    Full text link
    Video captioning, the task of describing the content of a video, has seen some promising improvements in recent years with sequence-to-sequence models, but accurately learning the temporal and logical dynamics involved in the task still remains a challenge, especially given the lack of sufficient annotated data. We improve video captioning by sharing knowledge with two related directed-generation tasks: a temporally-directed unsupervised video prediction task to learn richer context-aware video encoder representations, and a logically-directed language entailment generation task to learn better video-entailed caption decoder representations. For this, we present a many-to-many multi-task learning model that shares parameters across the encoders and decoders of the three tasks. We achieve significant improvements and the new state-of-the-art on several standard video captioning datasets using diverse automatic and human evaluations. We also show mutual multi-task improvements on the entailment generation task.Comment: ACL 2017 (14 pages w/ supplementary
    corecore