90 research outputs found

    On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition

    Full text link
    In conventional speech recognition, phoneme-based models outperform grapheme-based models for non-phonetic languages such as English. The performance gap between the two typically reduces as the amount of training data is increased. In this work, we examine the impact of the choice of modeling unit for attention-based encoder-decoder models. We conduct experiments on the LibriSpeech 100hr, 460hr, and 960hr tasks, using various target units (phoneme, grapheme, and word-piece); across all tasks, we find that grapheme or word-piece models consistently outperform phoneme-based models, even though they are evaluated without a lexicon or an external language model. We also investigate model complementarity: we find that we can improve WERs by up to 9% relative by rescoring N-best lists generated from a strong word-piece based baseline with either the phoneme or the grapheme model. Rescoring an N-best list generated by the phonemic system, however, provides limited improvements. Further analysis shows that the word-piece-based models produce more diverse N-best hypotheses, and thus lower oracle WERs, than phonemic models.Comment: To appear in the proceedings of INTERSPEECH 201

    Towards Language-Universal End-to-End Speech Recognition

    Full text link
    Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share some internal parameters. In this work, we exploit recent progress in end-to-end speech recognition to create a single multilingual speech recognition system capable of recognizing any of the languages seen in training. To do so, we propose the use of a universal character set that is shared among all languages. We also create a language-specific gating mechanism within the network that can modulate the network's internal representations in a language-specific way. We evaluate our proposed approach on the Microsoft Cortana task across three languages and show that our system outperforms both the individual monolingual systems and systems built with a multi-task learning approach. We also show that this model can be used to initialize a monolingual speech recognizer, and can be used to create a bilingual model for use in code-switching scenarios.Comment: submitted to ICASSP 201

    Grapheme-to-Phoneme Conversion with Convolutional Neural Networks

    Get PDF
    Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form. It has a highly essential role for natural language processing, text-to-speech synthesis and automatic speech recognition systems. In this paper, we investigate convolutional neural networks (CNN) for G2P conversion. We propose a novel CNN-based sequence-to-sequence (seq2seq) architecture for G2P conversion. Our approach includes an end-to-end CNN G2P conversion with residual connections, furthermore, a model, which utilizes a convolutional neural network (with and without residual connections) as encoder and Bi-LSTM as a decoder. We compare our approach with state-of-the-art methods, including Encoder-Decoder LSTM and Encoder-Decoder Bi-LSTM. Training and inference times, phoneme and word error rates were evaluated on the public CMUDict dataset for US English, and the best performing convolutional neural network based architecture was also evaluated on the NetTalk dataset. Our method approaches the accuracy of previous state-of-the-art results in terms of phoneme error rate
    • …
    corecore