252 research outputs found

    Visual-Semantic Learning

    Get PDF
    Visual-semantic learning is an attractive and challenging research direction aiming to understand complex semantics of heterogeneous data from two domains, i.e., visual signals (i.e., images and videos) and natural language (i.e., captions and questions). It requires memorizing the rich information in a single modality and a joint comprehension of multiple modalities. Artificial intelligence (AI) systems with human-level intelligence are claimed to learn like humans, such as efficiently leveraging brain memory for better comprehension, rationally incorporating common-sense knowledge into reasoning, quickly gaining in-depth understanding given a few samples, and analyzing relationships among abundant and informative events. However, these intelligence capacities are effortless for humans but challenging for machines. To bridge the discrepancy between human-level intelligence and present-day visual-semantic learning, we start from its basic understanding ability by studying the visual question answering (e.g., Image-QA and Video-QA) tasks from the perspectives of memory augmentation and common-sense knowledge incorporation. Furthermore, we stretch it to a more challenging situation with limited and partially unlabeled training data (i.e., Few-shot Visual-Semantic Learning) to imitate the fast learning ability of humans. Finally, to further enhance visual-semantic performance in natural videos with numerous spatio-temporal dynamics, we investigate exploiting event-correlated information for a comprehensive understanding of cross-modal semantics. To study the essential visual-semantic understanding ability of the human brain with memory, we first propose a novel Memory Augmented Deep Recurrent Neural Network (i.e., MA-DRNN) model for Video-QA, which features a new method for encoding videos and questions, and memory augmentation using the emerging Differentiable Neural Computer (i.e., DNC). Specifically, we encode semantic (i.e., questions) information before visual (i.e., videos) information, which leads to better visual-semantic representations. Moreover, we leverage Differentiable Neural Computer (with external memory) to store and retrieve valuable information in questions and videos and model the long-term visual-semantic dependency. In addition to basic understanding, to tackle visual-semantic reasoning that requires external knowledge beyond visible contents (e.g., KB-Image-QA), we propose a novel framework that endows the model with capabilities of answering more general questions and achieves better exploitation of external knowledge through generating Multiple Clues for Reasoning with Memory Neural Networks (i.e., MCR-MemNN). Specifically, a well-defined detector is adopted to predict image-question-related relation phrases, each delivering two complementary clues to retrieve the supporting facts from an external knowledge base (i.e., KB). These facts are encoded into a continuous embedding space using a content-addressable memory. Afterward, mutual interactions between visual-semantic representation and the supporting facts stored in memory are captured to distill the most relevant information in three modalities (i.e., image, question, and KB). Finally, the optimal answer is predicted by choosing the supporting fact with the highest score. Furthermore, to enable a fast, in-depth understanding given a small number of samples, especially with heterogeneity in the multi-modal scenarios such as image question answering (i.e., Image-QA) and image captioning (i.e., IC), we study the few-shot visual-semantic learning and present the Hierarchical Graph ATtention Network (i.e., HGAT). This two-stage network models the intra- and inter-modal relationships with limited image-text samples. The main contributions of HGAT can be summarized as follows: 1) it sheds light on tackling few-shot multi-modal learning problems, which focuses primarily, but not exclusively, on visual and semantic modalities, through better exploitation of the intra-relationship of each modality and an attention-based co-learning framework between modalities using a hierarchical graph-based architecture; 2) it achieves superior performance on both visual question answering and image captioning in the few-shot setting; 3) it can be easily extended to the semi-supervised setting where image-text samples are partially unlabeled. Although various attention mechanisms have been utilized to manage contextualized representations by modeling intra- and inter-modal relationships of the two modalities, one limitation of the predominant visual-semantic methods is the lack of reasoning with event correlation, sensing, and analyzing relationships among abundant and informative events contained in the video. To this end, we introduce the dense caption modality as a new auxiliary and distill event-correlated information to infer the correct answer. We propose a novel end-to-end trainable model, Event-Correlated Graph Neural Networks (EC-GNNs), to perform cross-modal reasoning over information from the three modalities (i.e., caption, video, and question). Besides exploiting a new modality, we employ cross-modal reasoning modules to explicitly model inter-modal relationships and aggregate relevant information across different modalities. We propose a question-guided self-adaptive multi-modal fusion module to collect the question-oriented and event-correlated evidence through multi-step reasoning. To evaluate our proposed models, we conduct extensive experiments on VTW, MSVD-QA, and TGIF-QA datasets for Video-QA task, Toronto COCO-QA, Visual Genome-QA datasets for few-shot Image-QA task, COCO-FITB dataset for few-shot IC task, and FVQA, Visual7W + ConceptNet datasets for KB-Image-QA task. The experimental results justify these models’ effectiveness and superiority over baseline methods

    Recent Advances of Local Mechanisms in Computer Vision: A Survey and Outlook of Recent Work

    Full text link
    Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field

    IDEA: Interactive DoublE Attentions from Label Embedding for Text Classification

    Full text link
    Current text classification methods typically encode the text merely into embedding before a naive or complicated classifier, which ignores the suggestive information contained in the label text. As a matter of fact, humans classify documents primarily based on the semantic meaning of the subcategories. We propose a novel model structure via siamese BERT and interactive double attentions named IDEA ( Interactive DoublE Attentions) to capture the information exchange of text and label names. Interactive double attentions enable the model to exploit the inter-class and intra-class information from coarse to fine, which involves distinguishing among all labels and matching the semantical subclasses of ground truth labels. Our proposed method outperforms the state-of-the-art methods using label texts significantly with more stable results.Comment: Accepted by ICTAI202

    More Than Just Attention: Improving Cross-Modal Attentions with Contrastive Constraints for Image-Text Matching

    Full text link
    Cross-modal attention mechanisms have been widely applied to the image-text matching task and have achieved remarkable improvements thanks to its capability of learning fine-grained relevance across different modalities. However, the cross-modal attention models of existing methods could be sub-optimal and inaccurate because there is no direct supervision provided during the training process. In this work, we propose two novel training strategies, namely Contrastive Content Re-sourcing (CCR) and Contrastive Content Swapping (CCS) constraints, to address such limitations. These constraints supervise the training of cross-modal attention models in a contrastive learning manner without requiring explicit attention annotations. They are plug-in training strategies and can be easily integrated into existing cross-modal attention models. Additionally, we introduce three metrics including Attention Precision, Recall, and F1-Score to quantitatively measure the quality of learned attention models. We evaluate the proposed constraints by incorporating them into four state-of-the-art cross-modal attention-based image-text matching models. Experimental results on both Flickr30k and MS-COCO datasets demonstrate that integrating these constraints improves the model performance in terms of both retrieval performance and attention metrics.Comment: Accepted to WACV 202

    Knowledge-Enhanced Hierarchical Information Correlation Learning for Multi-Modal Rumor Detection

    Full text link
    The explosive growth of rumors with text and images on social media platforms has drawn great attention. Existing studies have made significant contributions to cross-modal information interaction and fusion, but they fail to fully explore hierarchical and complex semantic correlation across different modality content, severely limiting their performance on detecting multi-modal rumor. In this work, we propose a novel knowledge-enhanced hierarchical information correlation learning approach (KhiCL) for multi-modal rumor detection by jointly modeling the basic semantic correlation and high-order knowledge-enhanced entity correlation. Specifically, KhiCL exploits cross-modal joint dictionary to transfer the heterogeneous unimodality features into the common feature space and captures the basic cross-modal semantic consistency and inconsistency by a cross-modal fusion layer. Moreover, considering the description of multi-modal content is narrated around entities, KhiCL extracts visual and textual entities from images and text, and designs a knowledge relevance reasoning strategy to find the shortest semantic relevant path between each pair of entities in external knowledge graph, and absorbs all complementary contextual knowledge of other connected entities in this path for learning knowledge-enhanced entity representations. Furthermore, KhiCL utilizes a signed attention mechanism to model the knowledge-enhanced entity consistency and inconsistency of intra-modality and inter-modality entity pairs by measuring their corresponding semantic relevant distance. Extensive experiments have demonstrated the effectiveness of the proposed method
    • …
    corecore