231 research outputs found

    A Feature-Driven Active Framework for Ultrasound-Based Brain Shift Compensation

    Full text link
    A reliable Ultrasound (US)-to-US registration method to compensate for brain shift would substantially improve Image-Guided Neurological Surgery. Developing such a registration method is very challenging, due to factors such as missing correspondence in images, the complexity of brain pathology and the demand for fast computation. We propose a novel feature-driven active framework. Here, landmarks and their displacement are first estimated from a pair of US images using corresponding local image features. Subsequently, a Gaussian Process (GP) model is used to interpolate a dense deformation field from the sparse landmarks. Kernels of the GP are estimated by using variograms and a discrete grid search method. If necessary, the user can actively add new landmarks based on the image context and visualization of the uncertainty measure provided by the GP to further improve the result. We retrospectively demonstrate our registration framework as a robust and accurate brain shift compensation solution on clinical data acquired during neurosurgery

    Visual Tracking in Robotic Minimally Invasive Surgery

    Get PDF
    Intra-operative imaging and robotics are some of the technologies driving forward better and more effective minimally invasive surgical procedures. To advance surgical practice and capabilities further, one of the key requirements for computationally enhanced interventions is to know how instruments and tissues move during the operation. While endoscopic video captures motion, the complex appearance dynamic effects of surgical scenes are challenging for computer vision algorithms to handle with robustness. Tackling both tissue and instrument motion estimation, this thesis proposes a combined non-rigid surface deformation estimation method to track tissue surfaces robustly and in conditions with poor illumination. For instrument tracking, a keypoint based 2D tracker that relies on the Generalized Hough Transform is developed to initialize a 3D tracker in order to robustly track surgical instruments through long sequences that contain complex motions. To handle appearance changes and occlusion a patch-based adaptive weighting with segmentation and scale tracking framework is developed. It takes a tracking-by-detection approach and a segmentation model is used to assigns weights to template patches in order to suppress back- ground information. The performance of the method is thoroughly evaluated showing that without any offline-training, the tracker works well even in complex environments. Finally, the thesis proposes a novel 2D articulated instrument pose estimation framework, which includes detection-regression fully convolutional network and a multiple instrument parsing component. The framework achieves compelling performance and illustrates interesting properties includ- ing transfer between different instrument types and between ex vivo and in vivo data. In summary, the thesis advances the state-of-the art in visual tracking for surgical applications for both tissue and instrument motion estimation. It contributes to developing the technological capability of full surgical scene understanding from endoscopic video

    Role of deep learning in infant brain MRI analysis

    Get PDF
    Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them

    Reasoning with Uncertainty in Deep Learning for Safer Medical Image Computing

    Get PDF
    Deep learning is now ubiquitous in the research field of medical image computing. As such technologies progress towards clinical translation, the question of safety becomes critical. Once deployed, machine learning systems unavoidably face situations where the correct decision or prediction is ambiguous. However, the current methods disproportionately rely on deterministic algorithms, lacking a mechanism to represent and manipulate uncertainty. In safety-critical applications such as medical imaging, reasoning under uncertainty is crucial for developing a reliable decision making system. Probabilistic machine learning provides a natural framework to quantify the degree of uncertainty over different variables of interest, be it the prediction, the model parameters and structures, or the underlying data (images and labels). Probability distributions are used to represent all the uncertain unobserved quantities in a model and how they relate to the data, and probability theory is used as a language to compute and manipulate these distributions. In this thesis, we explore probabilistic modelling as a framework to integrate uncertainty information into deep learning models, and demonstrate its utility in various high-dimensional medical imaging applications. In the process, we make several fundamental enhancements to current methods. We categorise our contributions into three groups according to the types of uncertainties being modelled: (i) predictive; (ii) structural and (iii) human uncertainty. Firstly, we discuss the importance of quantifying predictive uncertainty and understanding its sources for developing a risk-averse and transparent medical image enhancement application. We demonstrate how a measure of predictive uncertainty can be used as a proxy for the predictive accuracy in the absence of ground-truths. Furthermore, assuming the structure of the model is flexible enough for the task, we introduce a way to decompose the predictive uncertainty into its orthogonal sources i.e. aleatoric and parameter uncertainty. We show the potential utility of such decoupling in providing a quantitative “explanations” into the model performance. Secondly, we introduce our recent attempts at learning model structures directly from data. One work proposes a method based on variational inference to learn a posterior distribution over connectivity structures within a neural network architecture for multi-task learning, and share some preliminary results in the MR-only radiotherapy planning application. Another work explores how the training algorithm of decision trees could be extended to grow the architecture of a neural network to adapt to the given availability of data and the complexity of the task. Lastly, we develop methods to model the “measurement noise” (e.g., biases and skill levels) of human annotators, and integrate this information into the learning process of the neural network classifier. In particular, we show that explicitly modelling the uncertainty involved in the annotation process not only leads to an improvement in robustness to label noise, but also yields useful insights into the patterns of errors that characterise individual experts

    Development of Efficient Intensity Based Registration Techniques for Multi-modal Brain Images

    Get PDF
    Recent advances in medical imaging have resulted in the development of many imaging techniques that capture various aspects of the patients anatomy and metabolism. These are accomplished with image registration: the task of transforming images on a common anatomical coordinate space. Image registration is one of the important task for multi-modal brain images, which has paramount importance in clinical diagnosis, leads to treatment of brain diseases. In many other applications, image registration characterizes anatomical variability, to detect changes in disease state over time, and by mapping functional information into anatomical space. This thesis is focused to explore intensity-based registration techniques to accomplish precise information with accurate transformation for multi-modal brain images. In this view, we addressed mainly three important issues of image registration both in the rigid and non-rigid framework, i.e. i) information theoretic based similarity measure for alignment measurement, ii) free form deformation (FFD) based transformation, and iii) evolutionary technique based optimization of the cost function. Mutual information (MI) is a widely used information theoretic similarity measure criterion for multi-modal brain image registration. MI only dense the quantitative aspects of information based on the probability of events. For rustication of the information of events, qualitative aspect i.e. utility or saliency is a necessitate factor for consideration. In this work, a novel similarity measure is proposed, which incorporates the utility information into mutual Information, known as Enhanced Mutual Information(EMI).It is found that the maximum information gain using EMI is higher as compared to that of other state of arts. The utility or saliency employed in EMI is a scale invariant parameter, and hence it may fail to register in case of projective and perspective transformations. To overcome this bottleneck, salient region (SR) based Enhance Mutual Information (SR-EMI)is proposed, a new similarity measure for robust and accurate registration. The proposed SR-EMI based registration technique is robust to register the multi-modal brain images at a faster rate with better alignment

    Deep Learning in Medical Image Analysis

    Get PDF
    The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements
    corecore