288 research outputs found

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Wireless information and power transfer: from scientific hypothesis to engineering practice

    No full text
    Recently, there has been substantial research interest in the subject of Simultaneous Wireless Information andPower Transfer (SWIPT) owing to its cross-disciplinary appeal and its wide-ranging application potential, whichmotivates this overview. More explicitly, we provide a brief survey of the state-of-the-art and introduce severalpractical transceiver architectures that may facilitate its implementation. Moreover, the most important link-levelas well as system-level design aspects are elaborated on, along with a variety of potential solutions and researchideas. We envision that the dual interpretation of Radio Frequency (RF) signals creates new opportunities as wellas challenges requiring substantial research, innovation and engineering efforts
    corecore