1,904 research outputs found

    Compliance error compensation technique for parallel robots composed of non-perfect serial chains

    Get PDF
    The paper presents the compliance errors compensation technique for over-constrained parallel manipulators under external and internal loadings. This technique is based on the non-linear stiffness modeling which is able to take into account the influence of non-perfect geometry of serial chains caused by manufacturing errors. Within the developed technique, the deviation compensation reduces to an adjustment of a target trajectory that is modified in the off-line mode. The advantages and practical significance of the proposed technique are illustrated by an example that deals with groove milling by the Orthoglide manipulator that considers different locations of the workpiece. It is also demonstrated that the impact of the compliance errors and the errors caused by inaccuracy in serial chains cannot be taken into account using the superposition principle.Comment: arXiv admin note: text overlap with arXiv:1204.175

    Dynamic Modeling and Simulation of a Rotating Single Link Flexible Robotic Manipulator Subject to Quick Stops

    Get PDF
    Single link robotic manipulators are extensively used in industry and research operations. The main design requirement of such manipulators is to minimize link dynamic deflection and its active end vibrations, and obtain high position accuracy during its high speed motion. To achieve these requirements, accurate mathematical modeling and simulation of the initial design, to increase system stability and precision and to obtain very small amplitudes of vibration, should be considered. In this paper the modeling of such robotic arm with a rigid guide and a flexible extensible link subject to quick stops after each complete revolution is considered and its dynamical behavior analyzed. The extensible link which rotates with constant angular velocity has one end constrained to a predefined trajectory. The constrained trajectory allows trajectory control and obstacle avoidance for the active end of the robotic arm. The dynamic evolution of the system is investigated and the flexural response of the flexible link analyzed under the combined effect of clearance and flexibility.

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly

    Numerical approach of collision avoidance and optimal control on robotic manipulators

    Get PDF
    Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured

    Computational neural learning formalisms for manipulator inverse kinematics

    Get PDF
    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints

    Minimum-time path planning for robot manipulators using path parameter optimization with external force and frictions

    Get PDF
    This paper presents a new minimum-time trajectory planning method which consists of a desired path in the Cartesian space to a manipulator under external forces subject to the input voltage of the actuators. Firstly, the path is parametrized with an unknown parameter called a path parameter. This parameter is considered a function of time and an unknown parameter vector for optimization. Secondly, the optimization problem is converted into a regular parameter optimization problem, subject to the equations of motion and limitations in angular velocity, angular acceleration, angular jerk, input torques of actuators’, input voltage and final time, respectively. In the presented algorithm, the final time of the task is divided into known partitions, and the final time is an additional unknown variable in the optimization problem. The algorithm attempts to minimize the final time by optimizing the path parameter, thus it is parametrized as a polynomial of time with some unknown parameters. The algorithm can have a smooth input voltage in an allowable range; then all motion parameters and the jerk will remain smooth. Finally, the simulation study shows that the presented approach is efficient in the trajectory planning for a manipulator that wants to follow a Cartesian path. In simulations, the constraints are respected, and all motion variables and path parameters remain smooth

    Feedrate planning for machining with industrial six-axis robots

    Get PDF
    The authors want to thank Stäubli for providing the necessary information of the controller, Dynalog for its contribution to the experimental validations and X. Helle for its material contributions.Nowadays, the adaptation of industrial robots to carry out high-speed machining operations is strongly required by the manufacturing industry. This new technology machining process demands the improvement of the overall performances of robots to achieve an accuracy level close to that realized by machine-tools. This paper presents a method of trajectory planning adapted for continuous machining by robot. The methodology used is based on a parametric interpolation of the geometry in the operational space. FIR filters properties are exploited to generate the tool feedrate with limited jerk. This planning method is validated experimentally on an industrial robot

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation
    • …
    corecore